
Introduction to Active Appearance Models:

Understanding Theory and Algorithms

Ricardo D.C. Maŕın

October 2011

Abstract

Active Appearance Models learn and build a mathematical model for shape
and appearance variance inside a database of images of an object in ques-
tion. The method can be used for many computer vision tasks including face
recognition and tracking in videos. In this document I present in a detailed
format the theory behind such learning process, and provide guidelines for
implementing the method from scratch by using a well known database of an-
notated face images, which is the imm face database[Nordstrom et al., 2004].

Contents

1 Introduction 2
1.1 Structure of the Report . 3

2 PCA Shape Model 4
2.1 Shape Space . 4
2.2 Shape Alignment with Procrustes Analysis 7
2.3 Shape Model . 11

3 PCA Appearance Model 15
3.1 Appearance Space . 15
3.2 Appearance Model . 21

4 PCA Shape + Appearance Model 23
4.1 Parameter Space . 23
4.2 Combined Shape and Appearance Model 24
4.3 Combined Model Instance . 25

Conclusion 27

Acknowledgements 27

Bibliography 28

1

Chapter 1

Introduction

How do we know computationally if an image contains an specific object?.
An instance of this problem is how can we be sure that an image contains
a face. If we define video as a sequence of images (frames), going further
we can add complexity to the problem and ask for a system that apart
from identifying an object in a video, once found, the system is capable of
describing how the object change its position, orientation and possibly color
intensities along time. The first problem is known as detection or recognition
while the second has been called tracking. Identification is performed by us
humans as a cognition process involving our memory or what we have learned
before, that is, we recognize an object because we have see it before, or then
by inference or deduction (from a previous description) in a probabilistic
fashion: we can’t know for sure, or we may be wrong. To simulate the
learning process computationally, usually we need to feed the system with
information that we have previously well classified and described, that is,
a database of training information from where we want to learn. The step
from taking a collection of images to developing a mathematical model for a
system to learn something from these training images samples is the crucial
factor of every machine learning process for image interpretation.

Over the years, numerous mathematical approaches has been developed
for providing solutions for detection and tracking, ones with bigger suc-
cess than others for many factors including how well does the system re-
spond to new instances not present in the training samples. As we will
see through this document, of special interest for facial motion tracking is
the method introduced in [Cootes et al., 2001] called Active Appearance
Models (AAM) which expanded a previous work of the same authors
[Cootes et al., 1995] called Active Shape Models (ASM). In AAM, we
would like to create a mathematical model for describing shape and appear-
ance of a class of objects within its different instances present in different
images. To fully understand this sentence we need to know get some in-
tuition on what we mean by a mathematical model, and what we call an

2

instance of a class of objects in an image.
A mathematical model is an abstraction of a system, or intuitively,

of a real life situation or phenomena described in mathematical terms. As
an example, the Newton’s laws are a mathematical model for describing
objects motion due to external forces. Since a model is a mathematical
description, it uses mathematical concepts like functions, equations, param-
eters, sets, etc. To construct a model, first we abstractly separate the system
in components and their inherent relationships. Intuitively, each component
is translated to a mathematical concept as well as their relationships, in
order to reach some field within mathematics from which we can reason and
make conclusions about the system that otherwise (without this mathemat-
ical translation) couldn’t be noticed or couldn’t be asserted. The key point
is that mathematics is an exact field and, having everything well defined,
we gain control over the system. Since a single system could be described
mathematically in different ways, a system may have more than one model.

Being itself a model, AAM’s are a mathematical description of shape
and appearance variance that exist for a class of objects in images. This
document address the construction of such model. The main components of
this system are shape and appearance, so we need to define and translate
them in mathematical terms. Variance between different shapes and appear-
ances need also to be treated as a component/relationship that need to be
translated into mathematics. Since Principal Component Analysis (PCA)
is a fundamental tool for describing variance in a collection of samples, it
will help us with in this task.

1.1 Structure of the Report

This report is divided in 3 main chapters. Chapter 2 introduce the mathe-
matical representation of shape. We study a space of shapes, and construct
a PCA linear model for variance in a discrete set of aligned samples of
this space. Similarly to shapes, appearance mathematical representation is
discussed in chapter 3, as well as a PCA model for a our training images
appearances. Since these two chapters construct independent parameters
for shape and appearance, chapter 4 performs PCA method in the set of
the already constructed model parameters of shape and appearance, to ac-
count for correlations between these two properties. The combined model
description as well as computation of model instances is discussed there.

Algorithms that give insights on an implementation of combined AAM’s
are distributed along sections in all chapters. The code can be treated as
pseudo-code with similarities to C/C + +, but must be not totally treated
or translated to this language. The database of face images imm face
database[Nordstrom et al., 2004] is used through all the examples and im-
plementation in this document.

3

Chapter 2

PCA Shape Model

2.1 Shape Space

Since we will be talking about shape, we need to address how to represent
shape in images mathematically. The simplest approach is to use landmarks
points positioned on the apparent edges or contours of the object. The
landmarks should be positioned such that the object form is well captured
and the quantity of landmarks should be taken into account for the sake of
the description. Figure 2.1 shows different instances of a face (our object
of interest) with annotated landmarks. To represent the shape of the face,
landmarks are positioned on places that distinguish the image as a face: eyes,
eyebrows, nose, lips and face contour. Notice that although we are using the
face of the same person, his shape landmarks varies from image to image
according to the expression (non rigid motion) or head rigid motion. This
shape variance in our training database is fundamental for a robust model of
shape, since we are going to make use of PCA to approximate all variance
present on different faces and on different poses (rigid and non-rigid) for
tracking motion.

To give some intuition over the statistical model that we are going to
construct, let’s think for a moment in terms of linear algebra. Given an
image in the database, its corresponding shape s is defined as the set of
n points positions s = {(xi, yi)}ni=1 in two dimensions (pixel coordinates)1.
Instead of a set, a more useful representation is the concatenation of each
point in a whole vector

s = (x1, y1, x2, y2, . . . , xn, yn) ∈ R2n.

We assume that the landmarks are always sorted in the same way, thus
if for example x5 of shape s1 correspond to the nose tip landmark, then

1In practice, coordinates x′ and y′ in [0, 1] are used instead of pixel coordinates x
and y in [image width, image height]. The simple conversion x′ = x/image width, y′ =
y/image height is used for this.

4

Figure 2.1: Landmark points for shape representation. Up non-rigid shape
motion and down rigid shape motion.

x5 of any other shape s2 correspond also to this same nose tip landmark.
Assuming further that all faces in our training database have the same
number of landmarks that describe its shape, with this new representation
we have obtained that all shapes are points of the space R2n. However,
not all points of R2n correspond to shapes of our object, in a semantic
way. What this means is that the above vector definition of shape needs
to be refined since it doesn’t take into account the relationship that exist
inherently between landmark points. As an example technically the null
vector 0 of R2n with the above definition is a shape, but semantically it
doesn’t give us a shape with eyes, nose, etc. The shape definition thus needs
to account for the type of object it describes. Nevertheless, this definition
although incomplete is useful since it allow us to operate with shapes using
linear algebra methods.

5

Thus shapes conforms a subset of R2n space that we will denote by S.
For account for intuition, let’s assume that this set correspond to a sphere
centered at the origin of coordinates of R2n and with radius ρ, and therefore
all our shapes satisfy the equation of the sphere

∑n
i=1(x

2
i + y2i) = ρ2. Now

for simplicity let’s further assume our space R2n is R2. This is great, now all
the points in the sphere not only satisfy x2 + y2 = ρ2 but also they can be
represented as (ρ cos θ, ρ sin θ) for some θ ∈ R. The interesting point in this
simplification, is that the set of shapes (which we are assuming are points in
the circumference of radius ρ) can be represented by selecting θ values and
evaluating the vectorial function

f(θ) = (ρ cos θ, ρ sin θ).

No matter which θ value in R we choose, by evaluating this function we
will reach a shape, i.e a point in the circumference of radius ρ. Thus we can
think of f as a ”generator” of shapes. Analogously, the spherical coordinates
function

f(θ, φ) = (ρ sin θ cosφ, ρ sin θ sinφ, ρ cos θ)

is a ”generator” of points inside the sphere centered at the origin of R3 and
with radius ρ for every (θ, φ).

Let’s check some properties of the generator functions we have seen.
First, notice that being the functions f periodic we can restrict their domain
to θ ∈ [0, 2π] for R2 and θ ∈ [0, π], φ ∈ [0, 2π] in R3, and still be able to
cover all points in the circumference or sphere. Second, observe that with
this generators, our shapes can be represented with less parameters: in
R2 we just need one value θ instead of two (x, y), and in R3 we need two
values (θ, φ) instead of three (x, y, z). Third, notice how going from R2

to R3 makes more complex the generator function. Mathematically, with
properly restrictions on the domain of the functions f , they form what are
called parameterizations of the sphere. A parameterization of the sphere in
any dimension such as R2n can be achieved using a stereographic projection.
Finally, a fundamental fact for our shape model, is that parameterizations
permit us walk continuously on the set they describe; we will never reach a
point outside of this set, we will never reach a no-shape point, and we are
able reach shapes that are near other shapes continuously.

The assumption of S being a sphere of R2n is far from realistic. In fact
we can’t know for sure how S is. Still, it is natural to ask whether or not a
generator of shapes for S exist (not for our simple sphere), and if it exist,
how can we find or construct one?. One of the main problems in finding
answers to these questions relies precisely on the ambiguous definition of
shape, since we can’t say for sure (except in some simple cases) if a point
in R2n is a shape or not, since we have not well characterized the points of
R2n that describes the contours of our object.

6

Now let’s try to get some intuition on S. A good observation is that if s
is a shape in a particular image, then for any rotation matrix R of R2n, the
rotated shape R·s stills describes our object but in a different image, namely,
the rotated initial image. Since the same reasoning applies for translation
and scaling, we can say that S is invariant under affine transformations in
R2n. This implies that we can restrict our investigation of S to a subset
S′ ⊂ S obtained by removing scaling, rotation and translation. The fact is
that, from this new subset S′, we can reconstruct the whole original shape
set S, precisely by scaling, rotating and translating. Another observation
is that S as well as S′ are composed of infinitely many shapes, since we all
humans have different face configurations. Given that in practice we can
only have a finitely set of training image samples, we will get a finite subset
DS of shapes. In other words, the set S is the population (infinite) but in
practice we will have a (finite or discrete) sample set DS of this population.
It is important to note that the samples we get from the training images
have present rotation, translation and scaling among them, that is, DS ⊂ S.
Since we want to restrict our investigation to S′ we will need a method to
remove scaling, rotation and translation of members of DS to obtain its
equivalent discrete set DS′ ⊂ S′. The common method for this is called
Procrustes Analysis2.

2.2 Shape Alignment with Procrustes Analysis

An affine transformation in R2 can be totally described by a 2 × 2 scaling
(f) rotation (θ) matrix

M(f, θ) =

(
f cos θ −f sin θ
f sin θ f cos θ

)
and a translation vector

t = (tx, ty) ∈ R2.

Since any shape s ∈ S in our shape space is a collection of n points in
R2, we can use such an affine transformation in a point by point fashion to
obtain a transformed shape

st = (xt1 , yt1 , xt2 , yt2 , . . . , xtn , ytn).

Point by point transformation means that fixing the scaling f , the rotation
θ and the translation vector t, we have for all i = 1, 2, ..., n:

M(f, θ)

(
xi
yi

)
+ t =

(
xti
yti

)
2Procrustes is character from Greek mythology that stretched people to an iron bed

by cutting their extremities.

7

Thus a transformation T = (M(f, θ), t) takes shapes s to transformed shapes
st. We write this as st = T · s, and its coordinates can be computed with
the previous equation.

Taking a shape sr as a constant reference, alignment of any other shape
s with respect to sr means to find a transformation T in order to minimize
the difference between the transformed shape and the shape reference

E(T) = E(f, θ, t) = |sr − (T · s)| = |sr − st| . (2.1)

This equation must be understood as the distance in R2n between sr and
st.

Procrustes analysis refers indirectly to solving this problem, since when
we apply a transformation that minimize (2.1) to a shape, we are removing
scaling, rotation and translation with respect to the reference shape, like if
we were fitting shape s to sr. To find such transformation we can use a
simplification3 of an approach included in the original paper on ASM. First
define ax = f cos θ and ay = f sin θ. The method consist in solving the 4×4
linear system

X2 Y2 n 0
Y2 X2 0 n
Z 0 X2 Y2
0 Z −Y2 X2

ax
ay
tx
ty

 =

X1

Y1
C1

C2

 (2.2)

3In general, a vector of weights W ∈ R2n is used to influence the motion of points in
a shape. A simplification is done by treating all the weights equal to 1.

8

where all the constants can be computed as:

X1 =
n∑

i=1

xri (2.3a)

Y1 =
n∑

i=1

yri (2.3b)

X2 =
n∑

i=1

xi (2.3c)

Y2 =
n∑

i=1

yi (2.3d)

W = n (2.3e)

Z =
n∑

i=1

x2i + y2i (2.3f)

C1 =
n∑

i=1

xi · xri + yi · yri (2.3g)

C2 =
n∑

i=1

yri · xi − xri · yi (2.3h)

After solving (2.2) we will obtain the matrix M(f, θ) from ax and ay,
and the translation t directly. To understand why this method works, since
minimizing E is the same as minimizing E2, we write explicitly an equation
for E2(ax, ay, tx, ty) from (2.1):

E2(ax, ay, tx, ty) =
n∑

i=1

{
(
xri
yri

)
− (M(f, θ)

(
xi
yi

)
+ t)}2 (2.4)

and from calculus we know that to find the values (ax, ay, tx, ty) that min-
imize (2.4), we must find the derivatives of E2 with respect to each of the
parameters ax, ay, tx, ty and solve ∇E2 = 0. Making these calculations will
lead us to (2.2). In summary, the next algorithm performs alignment of a
shape s with respect to a reference sr:

void procrustesAlignment (shape s , const shape sr) {
/* Compute the matrix e lements */
double X1=0.0 , X2=0.0 , Y1 =0.0 , Y2=0.0 , Z=0.0 , C1=0.0 , C2=0.0;
double W = (double) n ;
f o r (i n t i=0;i<n ; i++){

X1 += sr [2* i] ;
Y1 += sr [2* i+1] ;
X2 += s [2* i] ;
Y2 += s [2* i+1] ;
Z += s [2* i]* s [2* i] + s [2* i+1]*s [2* i+1] ;

9

C1 += s [2* i]* sr [2* i] + s [2* i+1]*sr [2* i+1] ;
C2 += sr [2* i+1]*s [2* i] − sr [2* i]* s [2* i+1] ;

}

/* Arrange the matrix and vec to r o f the l i n e a r system */

double PAMatrix [4] [4] ;
PAMatrix [0] [0] = X2 ; PAMatrix [0] [1] = −Y2 ;
PAMatrix [0] [2] = W ; PAMatrix [0] [3] = 0 . 0 ;
PAMatrix [1] [0] = Y2 ; PAMatrix [1] [1] = X2 ;
PAMatrix [1] [2] = 0 ; PAMatrix [1] [3] = W ;
PAMatrix [2] [0] = Z ; PAMatrix [2] [1] = 0 . 0 ;
PAMatrix [2] [2] = X2 ; PAMatrix [2] [3] = Y2 ;
PAMatrix [3] [0] = 0 . 0 ; PAMatrix [3] [1] = Z ;
PAMatrix [3] [2] =−Y2 ; PAMatrix [3] [3] = X2 ;

double b [4] ;
b [0]= X1 ;
b [1]= Y1 ;
b [2]= C1 ;
b [3]= C2 ;

/* Solve the l i n e a r system : PAMATRIX*T = b */
double T [4] ; // T=(ax , ay , tx , ty)
linear_solver (PAMatrix , b , T) ;

/* Transform the shape s by T */
double xr , yr ;
f o r (i n t i=0; i<n ; i++){

xr = T [0] * s [2* i] − T [1] * s [2* i+1] ;
yr = T [1] * s [2* i] + T [0] * s [2* i+1] ;
s [2* i] = xr + T [2] ; // xr + tx
s [2* i + 1] = yr + T [3] ; // yr + ty

}
}

Until this point we have aligned a single shape s to a reference sr. In
practice we want to take all the samples shapes s ∈ DS and align them
to the same reference sr. The reference could be any shape. A common
approach consist in taking sr as the mean shape of the set of samples DS.
This lead us to the following algorithm to perform shape alignment in our
samples database:

void shapesAligment (shape* shSamples) {
shape cmsh ; // cur rent mean shape
shape nmesh ; // new mean shape
double d ;
computeMeanShape (shSamples ,&cmsh) ;
bool convergence = f a l s e ;
do{

/*Align a l l shapes with r e f e r e n c e shape the cur rent mean*/
f o r (i n t k=0;k<nSamples ; k++){
procrustesAlignment (shSamples [k] , cmsh) ;
}

/* Compute the new mean shape o f the a l i gned shapes */
computeMeanShape (shSamples ,&nmesh) ;

10

/* Check f o r convergence , */
d = EuclideanDistance (cmsh , nmesh) ;
i f (d < 0 .1) convergence = true ;
e l s e oldMeanShape = newMeanShape ;

}whi le (! convergence) ;
}

Figure 2.2 shows the result of applying the shapes alignment algorithm
to the face database imm face db we are using in this document.

Figure 2.2: Raw and Aligned Samples. Left: Raw samples with the mean in
red, set DS; Right: Aligned samples with respect to the mean, our set DS′

2.3 Shape Model

In the previous section we saw how we can construct the set of aligned
shapes DS′. We now turn our interest in modeling the inherent variation
in this set. In ASM, the approach used for this is PCA4. Intuitively we can
think of PCA as a change of coordinates R2n, where the the set of nv vectors
V = {Vi}nvi=1, of the new reference frame are pointing in the directions of
variance in the shape set DS′. The PCA method begins by computing the
means of each of the coordinates xi and yi for all i, producing a mean vector
of n components, each component being the mean of coordinate xi or yi.
Setting a matrix Φs of 2n × ns where each column is exactly one shape
of DS′ minus the computed mean vector, with ns the number of samples
shapes in DS′, PCA find the set V to be the eigenvectors of the covariance
matrix of Φs, computed as

Cov(Φs) =
1

ns
ΦsΦ

T
s

We denote by s̄ the mean shape of DS′ as in the previous section and
we proceed to define a matrix Es which has as columns all the sorted eigen-
vectors V . Note that all Vi are in R2n, so the matrix Es is of order 2n×nv.

4A good reference for getting started with PCA is [Shlens, 2009]

11

The fundamental thing about PCA that we need to keep in mind for ASM
is that any shape sk ∈ DS′ can be approximated as:

sk = s̄+ Es · bk (2.5)

for some vector bk ∈ Rnv. We must see that in this equation the variable
is bk and not sk, given that we know values for sk, s̄ and Es, and we don’t
know who bk would be. Actually that is the next step. For a given sk in
DS′, if we take

bk = ET
s · (sk − s̄) (2.6)

we will see that replacing (2.6) in the right hand side of (2.5) we will reach sk.
This is not satisfactorily enough, since for knowing bk we used the value of
sk, and vice-versa. What it is important is what happens when we consider
the right hand side of (2.5) as a function of b, with values of b not necessarily
obtained from (2.6):

Gs(b) = s̄+ Es · b (2.7)

Let’s get back for a moment to the discussion on shape space generators in
section 2.1. We note that the function Gs is a pretty good candidate for
generating shapes. For example for all b = bk obtained from (2.6), Gs(b) is a
shape, namely, sk ∈ DS′. Also Gs(0) = s̄ can be recognized as a shape (see
Figure 2.2). And what if b is not taken from (2.6) nor is b = 0? Let’s get
some intuition taking a scaled by f ∈ R canonical vector b = f · e1 ∈ Rnv.
Evaluating in (2.7) we get

Gs(f · e1) = s̄+ f · V1

This equation suggest us that by varying the scalar factor f we are obtaining
a perturbation of the s̄ in the direction of V1. The question is if Gs(f · e1)
which is a vector of R2n is a shape or not. The reader should be familiar
with this question from our discussion in 2.1. Since the shape space S is not
well characterized, we cannot demonstrate rigorously that this vector is a
shape. We however can plot Gs(f · e1) as a set of n points in R2. Figure 2.3
shows this for values of f = −2, 2. We see that unhappily we didn’t obtain
shapes for this values. So Gs generate shapes for some values of b, but not
for all.

So, is it possible to determine entirely a parameter set of b’s for which
Gs(b) is a shape?. Fortunately the answer is yes. Almost all the variance
present in DS′ on each principal direction Vi can be modeled by a scaled
version of Vi, with scaling factors in [−2.5

√
λi, 2.5

√
λi]. For our previous

discussion with Gs(f ·e1) this means that by varying f in [−2.5
√
λ1, 2.5

√
λ1]

we will probably get similar shapes (variant shapes) to shapes present in our
set DS′. Figure 2.4 shows plots of Gs(f ·e1) for values of f = −2

√
λ1, 2

√
λ1.

12

Figure 2.3: Plot of the vectors Gs(f · e1): Left f = −2; Right f = 2. These
are not face shapes.

Figure 2.4: Plot of the vectors Gs(f ·e1): Left f = −2
√
λ1; Right f = 2

√
λ1.

These are face shapes.

Therefore a possible parameter set for which Gs(b) is a generator of
shapes would be

Ps =
nv∏
i=1

[−2.5
√
λi, 2.5

√
λi] =

n∏
i=1

[−2.5σi, 2.5σi]. (2.8)

We call the function Gs(f · ei) for f in [−2.5
√
λi, 2.5

√
λi] the i-esim Mode

of Variation of our PCA model, since we just move from the mean shape in
the direction of the i− esim principal component (evaluating in (2.7)):

Gs(f · ei) = s̄+ f · Vi

In our example we were using b = f · e1, so 2.4 correspond to the 1st mode
of variation evaluated at two different values of f .

In summary a PCA shape model has been created from the function Gs

defined in (2.7) restricted to the parameter set Ps defined in (2.8). Shapes
generated by this model however are posed in the space S′ where we have
removed scaling, rotation and translation. To go back to the general space

13

S we simply use an affine transformation T . Our model thus correspond to
two main components: Gs restricted to Ps and an affine transformation T .
Note also that as with the generators functions discussed in section 2.1, no
matter which value of b in Ps we take, we will reach a variant/similar shape
in S′ to the ones present in DS′. Here we emphasize however that this model
is strictly dependent on DS′, since our new shapes generated by Gs will be
variants of the ones present in this set. For example, if we want a shape of
a happy expression, we will need to feed the set DS′ with samples of shapes
of happy expressions. This is an implication of the fact that Gs : Ps → S′

is not a surjective function, so not every s ∈ S′ has a parameter b for
which Gs(b) = s. Finally suppose that we have an input image that is not
present in our training database, but that contains an instance of the class
of our shape model. The problem of finding the parameter b and the affine
transformation T that best describe (approximate) this new instance shape
is called fitting. A detailed approach for solving a fitting problem can be
found on chapter 10, page 469 of [Sonka et al., 2007].

14

Chapter 3

PCA Appearance Model

3.1 Appearance Space

As with shape, in this section we address how to represent appearance in
images mathematically. A simple approach for this is a list of pixel intensities
values of a region of interest in the image sample. This list can be arranged
in a high m dimensional vector of (r, g, b) pixel intensities

c = (r1, g1, b1, r2, g2, b2, . . . , rm, gm, bm) ∈ Rm

which we call color vector. The region of interest in our case will be the set
of pixels positions which are inside of the shape that describe the object in
the image. To be more precise, a pixel position p ∈ R2 is inside the shape
s ∈ S, if for every triangulation of the set of n points that define s, which
are in R2, we can find a triangle that contains p. Therefore our region of
interest is composed of all points p which satisfy this property. In this way
to find the color vector c associated to a shape vector s, we triangulate s
and store in c the pixel intensities corresponding to pixels positions inside
all the triangles of the triangulation. Figure 3.1 shows an example result of
extracting the color vector (here visualized as pixels colors) of a raw image
of the training samples. The color vector is the collection of all the pixels of
the image at the right.

These color vectors c are however not well suited for what we want
to define as appearance. Observe that because of the dependence of the
region of interest with shape, the number of pixels positions m inside a
region of interest can vary from one image sample to another. Thus we
cannot use matrix algebra as we did with shapes for example, since we
would have vectors in multiple different spaces. And this is not the only
drawback. Imagine for example that we had two images with the same
neutral expression of the same person but one in frontal view and the other
in 45 degrees view. We would like our definition of appearance to be as equal
as possible in these two images, since what have changed from one to the

15

Figure 3.1: Region of Interest: On the original image (left), annotated
shape landmarks are triangulated (middle). The collection of pixels po-
sitions which are inside the triangulation compose our region of interest. Its
corresponding list of pixel intensities compose the color vector which is here
visualized as a set of pixels (right).

other is the view, and not the expression or the person face characteristics
(race, age, eyes, eyebrows, etc.). Observe however that if we define the
color vector to be appearance, appearance will be different for these two
images. To see this, it is obvious that the two shapes will differ, since shape
depends on the image you are seeing (remember that you manually annotate
landmarks in the samples accordingly to the form of the class of objects in
question). Now since the region of interest is dependent on the shape, the
region of interest will change for these two images, and more importantly, the
color vectors for these two images will differ because of this shape difference.
Note also that repeating a similar experiment, now taking two frontal images
of a neutral expression of the same person but under different illumination
of the scene, again the vector color will differ from illumination variance.

Therefore we need to find a definition for appearance that takes into
account these issues. In the literature however, the appearance definition
doesn’t treat the illumination difference problem inside this definition. The
usual theory goes as defining what is appearance, and based on the con-
structed set of appearance samples, perform photometric normalization to
remove illumination variance. Thus we will forget for now this issue and
proceed to define appearance.

Basically the main problem that the color vector has for being a good
appearance definition is the dependence on shapes, and the dimension m
over-definition. If we want to erase the influence of shape variance over the
color distribution vector, we would need to take a unique shape as a reference
(therefore removing shape variance) on which all colors can be treated. The
usual choice for a reference shape is the mean shape s̄ (see section 2.3),
shown in figure 3.2. Given an image in the database, its corresponding

16

appearance a is defined as the list of (r, g, b) pixel intensities inside s̄

a = (r1, g1, b1, r2, g2, b2, . . . , rm, gm, bm) ∈ Rm

that results from warping the region of interest of the image shape s to the
mean shape region. Observe that now m is constant, since we are taking
colors always on the same reference shape s̄. Also note that the only differ-
ence between a and the previously defined color vector c is that now color
triplets are inside of bars instead of s. Figure 3.3 shows an example result
of obtaining the appearance of a single image.

Figure 3.2: The Mean Shape s̄: Red: Landmarks of the mean shape; Black:
Bounding box of the landmarks points; Green: Delaunay triangulation of
the landmarks set.

Figure 3.3: Appearance Example: The original image (left) is warped to the
mean shape to obtain its appearance (Right).

Before giving implementation details on computing appearance vectors,
we first make some further notations on what we need to use. We denote
by TGL the triangulation associated to s̄. Usually TGL is computed as a

17

Delaunay triangulation1, storing a list of triangles by using the indexes of
the tree points in s̄ that conforms a triangle. Notice that TGL induce also
a triangulation for any other shape s, since by definition all the shapes have
their coordinates sorted in the same way, and thus their indexes are equal.
Thus in practice, we need to compute TGL just one time for s̄ and it will
give us triangulations for all other shapes in our training database. Triangles
of TGL in s̄ will be denoted by t̄ = (ā, b̄, c̄), and its corresponding triangle in
any other shape s will be denoted by t = (a, b, c), with each coordinate being
a point of the triangle. Later on we will be also using barycentric coordinates
of a point inside a triangle. In general, given a pixel position p = (px, py) its
barycentric coordinates with respect to the triangle (p1, p2, p3) are defined
as the triplet (α, β, γ) ∈ R3 which satisfy

p = α · p1 + β · p2 + γ · p3, α+ β + γ = 1.

To find such coordinates we solve the linear system

px = α · p1x + β · p2x + γ · p3x
py = α · p1y + β · p2y + γ · p3y
1 = α+ β + γ

which can be explicitly solved as

β =
pyp3x − p1xpy − p3xp1y − p3ypx + p1xp3y + pxp1y

−p2xp3y + p2xp1y + p1xp3y + p3xp2y − p3xp1y − p1xp2y
(3.1a)

γ =
pxp2y − pxp1y − p1xp2y − p2xpy + p2xp1y + p1xpy

−p2xp3y + p2xp1y + p1xp3y + p3xp2y − p3xp1y − p1xp2y
(3.1b)

α = 1− β − γ (3.1c)

An useful property of barycentric coordinates is that they allow us to
assert if the point is inside of the triangle simply by checking whether we
have 0 ≤ α, β, γ ≤ 1. Algorithm 3.1 returns true or false in the case the
point is inside or outside some triangle of a triangulation TGL. When true
the algorithm can be also used to store the corresponding triangle index in
TGL where the point is and its respective barycentric coordinates, that is,
weights.

bool pointInsideTriangle (point p , i n t * tId , double weights []) {
point p1 , p2 , p3 ;
f l o a t denom , alpha , beta , gamma ;
f o r (i n t i=0;i<TGL . nTri ; i++){ // f o r every t r i a n g l e

//The i−esim t r i a n g l e po in t s
p1 = TGL . triangles [i] . p1 ;

1For computing triangulations, [Berg et al., 2008] is a good reference.

18

p2 = TGL . triangles [i] . p2 ;
p3 = TGL . triangles [i] . p3 ;

//Compute ba ry c en t r i c coo rd ina t e s o f p with r e sp e c t to t r i a n g l e i
denom=−p2 . x*p3 . y + p2 . x*p1 . y + p1 . x*p3 . y + p3 . x*p2 . y − p3 . x*p1 . y←↩

− p1 . x*p2 . y ;

beta = p . y*p3 . x − p1 . x*p . y − p3 . x*p1 . y − p3 . y*p . x + p1 . x*p3 . y + ←↩
p . x*p1 . y ;

beta /=denom ;
gamma= p . x*p2 . y − p . x*p1 . y − p1 . x*p2 . y − p2 . x*p . y + p2 . x*p1 . y + ←↩

p1 . x*p . y ;
gamma/=denom ;
alpha=1−beta−gamma ;

// check i f po int be logns to t h i s t r i a n g l e #i us ing ba ryc en t r i c ←↩
coo rd ina t e s

i f (alpha>=0 && alpha<=1 && beta>=0 && beta<=1 && gamma>=0 && ←↩
gamma<=1){

// s t o r e the t r i a n g l e id and i t s ba ry c en t r i c coo rd ina t e s
(* tId) = i ;
weights [0]= alpha ; weights [1]= beta ; weights [2]= gamma ;
r e turn true ;

}
}
r e turn f a l s e ;
}

Figure 3.4 illustrate the process of obtaining the appearance vector for
a single image. In order to compute which are the pixels that conforms an
appearance vector a0 of an image that have shape s0, we use triangulations of
s0 and s̄ and perform warping in a piece-wise manner. For this, a backward
warping to fill in the mean shape s̄ with colors from the region of interest
of s0 is performed by iterating over the pixels of the bounding box of the
mean shape, p̄, and asking whether or not each of these pixels belongs to
a triangle of TGL. If a pixel doesn’t belong to any triangle, we continue
with the next pixel. If it belongs to triangle (ā, b̄, c̄) of s̄, we compute its
barycentric coordinates

p̄ = α · ā+ β · b̄+ γ · c̄

and use them to find its relative position in the corresponding triangle
(a, b, c) in s0. In a piece-wise affine warping this correspond to the posi-
tion p with

p = α · a+ β · b+ γ · c.

Since this new pixel position doesn’t have necessarily integer coordinates,
we cannot know directly which is the color on this position on the region
of interest in s0, so we use a bilinear interpolation method to compute its
pixel color from the surrounding pixel colors. Given these four color values
v1, v2, v3, v4, each with (r, g, b) components, the bilinear interpolated color
value v that is positioned on the previously found pixel p = (px, py) is

19

Figure 3.4: Obtaining Appearance Vectors: Using the triangulation of the
sample and the mean shape triangulation, the region of interest of the sample
is warped to the mean shape region to obtain the appearance vector.

computed as

vr = v1r(1− px)(1− py) + v2rpx(1− py) + v3r(1− px)py + v4rpxpy (3.2a)

vg = v1g(1− px)(1− py) + v2gpx(1− py) + v3g(1− px)py + v4gpxpy (3.2b)

vb = v1n(1− px)(1− py) + v2bpx(1− py) + v3b(1− px)py + v4bpxpy (3.2c)

Note that for these equations to work, it is necessary to have colors normal-
ized to [0, 1], as well as pixel coordinates (px, py) in [0, 1]. The appearance
vector a0 is finally composed of all these interpolated values v.

Because of our definition of shape and its influence on the region of
interest in which we perform the warping process, appearance takes into
account the intensities of the eyes, eyebrows, nose, lips and face contour,
etc. describing the colors configuration that would have the instance be-
fore any movement with respect to the mean shape have occurred. Note
that all our appearance vectors are defined inside the mean shape. Similar
to shapes, appearance vectors form a set A ⊂ Rm, and in practice for a

20

database of images we will have a discrete subset DA ⊂ A. These sets are
in general very hard to characterize and again we don’t have a method to
decide which vectors of Rm are appearance vectors. As stated previously,
once we have constructed our collection of appearance vectors DA, we would
like to remove their dependence on illumination to obtain a modified collec-
tion of appearances DA′. These new normalized vectors will serve as our
base for the construction of a PCA appearance model in a similar fashion as
we did for shapes in section 2.3, but modeling now variance in appearance
intensities rather than in shapes landmarks.

3.2 Appearance Model

In this section we turn our interest in modeling the spread of the data within
DA′, that is, appearance variance. Similarly to shapes, we use PCA to
analyze our data set. We denote by ā the mean appearance vector computed
as the mean of all vectors in the set DA′,

ā =
1

|DA′|
∑

a∈DA′

a.

We then construct the matrix Φa as having columns composed of the dif-
ference between appearance vectors a ∈ DA′ and the mean vector ā. Thus
Φa has order m × ns, with ns the number of samples in our set DA′. We
find the principal directions of variance in DA′ as the eigenvectors of the
covariance matrix of Φa, computed as

Cov(Φa) =
1

ns
ΦaΦT

a

This time we retain a number of nu eigenvectors U = {Ui}nui=1, which
are sorted in decreasing order accordingly to their associated eigenvalues
{γ}nui=1, and construct the matrix Ea of m×nu which has as columns all these
eigenvectors. Now every appearance ak ∈ DA′ can now be approximated by

ak = ā+ Ea · dk (3.3)

for some vector dk ∈ Rnu. Again in this equation the only variable term
that we don’t have values for is dk, which can be computed for a given ak
in DA′ as

dk = ET
a · (ak − ā) (3.4)

The vectors ak and dk can be seen as two different representations of ap-
pearance, one with pixel intensities and the other as a vector in the variance
parameter space Rnu. Similar to our shape model, if we now take the right
had side of (3.3) as a function of d ∈ Rnu, with values of d not necessarily
obtained from (3.4), we obtain

Ga(d) = ā+ Ea · d (3.5)

21

Since Ga can produce appearance vectors for some d’s (equation (3.4) for
example) but not for all d ∈ Rnu, in order forGa to be exclusively a generator
of appearance vectors, we restrict it to the set that give us parameters within
the appearance variance captured from the set DA′ by PCA, defined as

Pa =
nu∏
i=1

[−2.5
√
γi, 2.5

√
γi] (3.6)

In this way, the i-esim appearance mode of variation is defined as the function
Ga(f · ei), for the i − esim canonical vector ei ∈ Rnu, and for f varying in
[−2.5

√
γi, 2.5

√
γi], since we move from the mean appearance in the direction

of the i− esim principal component Ui (evaluating in (3.5)):

Ga(f · ei) = ā+ f · Ui

Summarizing, our PCA appearance model is composed of the function
Ga defined in (3.5), restricted to the set Pa defined in (3.6).

22

Chapter 4

PCA Shape + Appearance
Model

4.1 Parameter Space

In the two previous chapters we have constructed models for shape and ap-
pearance separately. These models based on Principal Component Analysis
(PCA) are totally described by equations (2.7) and (3.5):

Gs(b) = s̄+ Es · b; b ∈ Ps =
nv∏
i=1

[−2.5
√
λi, 2.5

√
λi] ⊂ Rnv (4.1a)

Ga(d) = ā+ Ea · d; d ∈ Pa =
nu∏
i=1

[−2.5
√
γi, 2.5

√
γi] ⊂ Rnu (4.1b)

Gs and Ga conforms what is known as Independent AAMs. In order to
construct a model that accounts for both shape and appearance correlations,
we make use of our training samples representations in the parameters spaces
Ps and Pa (refer to equations (2.6) and (3.4)):

bk = ET
s · (sk − s̄); sk ∈ DS′

dk = ET
a · (ak − ā); dk ∈ DA′

and create the unified parameter samples

ck =

[
Wsbk
dk

]
; ck ∈ DC ⊂ Rnv ×Rnu (4.2)

where Ws is a diagonal square matrix of nv×nv that accounts for the differ-
ence in unit measure between shape (distance) and appearance (intensities).
A common definition of Ws is (see section 5.2.1 of [Cootes et al., 2000])

Ws = rI

23

where r is found to be the ratio of all variance in texture to all variance in
shape

r =

∑nu
i=1 γi∑nv
i=1 λi

We will denote by DC to the collection of all the combined parameters
ck. By definition of the sets DS′ and DA′, DC turns out to be a discrete
set of a population set of combined parameters, a parameter space that we
denote by C. Also by definition of ck, C ⊂ Rnv ×Rnu.

In summary we have go from shape and appearance spaces, to a param-
eter space C where we have a collection of training samples DC.

4.2 Combined Shape and Appearance Model

Similar to the already defined PCA models, we can now construct a third
model that accounts for correlations between shape and appearance param-
eters. To model variance in DC, we will use PCA again. The first thing to
note about the set DC is that, since both bk and dk has zero mean (remem-
ber that these parameters were found by PCA), DC has zero mean: c̄ = 0.
To perform PCA on DC, we construct the matrix Φc as having columns
equal to each sample ck of DC, and so we find the directions of principal
variance as the eigenvectors of the covariance matrix

Cov(Φc) =
1

ns
ΦcΦ

T
c

Here ns denote the number of samples in DC, which is the same number
of samples in DS′ and DA′, that is, the number of training images in our
database. We retain ne number of eigenvectors N = {Ni}nei=1 of this matrix,
sorted in decreasing order accordingly to its correspondent set of eigenvalues
Λ = {α}nei=1. The matrix whose columns are Ni is denoted by Ec, which is
of order (nv+nu)×ne by definition. Similar to the other PCA models, and
since c̄ = 0, now every combined parameter ck ∈ DC can be approximated
by

ck = Ec · hk (4.3)

for some hk ∈ Rne, which can be found by knowing the parameter ck.

hk = ET
c · ck (4.4)

Observe that we have gone from the parameter set DC to another set of
parameters hk defined by this equation. Also note that as before, we have
constructed a generator function of combined parameters

Gc(h) = Ec · h (4.5)

24

with h restricted to the set

Pc =

ne∏
i=1

[−2.5
√
αi, 2.5

√
αi] (4.6)

4.3 Combined Model Instance

Given any parameter h ∈ Pc and the our combined model (4.5), how do
we obtain its associated shape and appearance?, and how do we visualize
them?. This is call a combined model instance. For this, we begin by simply
evaluating (4.5) on this h to obtain a vector c:

c = Gc(h) = Ec · h.

Since Ec is of order (nv + nu)× ne and h ∈ Rne, we have that c ∈ Rnv+nu.
We can then separate this vector as being composed of two vectors, one of
Rnv and the other of Rnu:

c =

[
wb
d

]
; wb ∈ Rnv, d ∈ Rnu

where wb represent the shape parameters, and d the appearance parameters.
However since when we constructed our combined model we scaled the shape
parameters by the weight matrix W (refer to (4.2)), we can compute our
true shape parameters by un-weighting wb:

b = W−1wb

and so b ∈ Rnv are corrected to its units of measure. Having b and d, we
can now use (4.1) to compute both shape and appearance

s = Gs(b) = s̄+ Es · b (4.7a)

a = Ga(d) = ā+ Ea · d; (4.7b)

From our construction of our appearance model, this appearance however is
a warped version of a region of interest to the mean shape s̄. To recover this
region of interest we back-warp a to the found shape s in a similar fashion
as described in section 3.1. Some examples results of this process are shown
on figure 4.1.

25

Figure 4.1: Region of Interest Reconstruction: The appearance (middle) is
warped back to the shape found by equations (4.7) to reconstruct the region
of interest (right) of the original image(left).

26

Conclusion

Active appearance models combine mathematical representations of both
shape and appearance to capture the inherent spread of data (variance) of
these properties inside a collection of images. Independent models as well as
combined models which takes into account correlations between shape and
appearance parameters, can be used to represent and interpret images of a
class of objects of our interest. The main mathematical tool for constructing
such models was Principal Component Analysis, and a good understanding
of linear algebra gave us some insights on what was happening intuitively
behind the equations.

Extensions for 3D AAM shapes and appearance can be performed by
using calibrated cameras and similar formulations to the exposed in this
document. Applications of AAMs are face recognition, expressions recogni-
tion, vision based performance driven facial animation and tracking among
others [Sonka et al., 2007]. The present document can be used as the start
point for research and practice of AAMs, since by knowing this kind of
models from its roots, we became able develop applications in a desired
field while understanding the theory that can be used for further innovative
research.

Acknowledgements

This research was supported by the European Union FP7 Integrated Project
VERE (No. 257695), Instituto de Telecomunicacoes - IT and Fundacão para
a Ciência e a Tecnologia - FCT, Portugal.

27

Bibliography

[Berg et al., 2008] Berg, M. d., Cheong, O., Kreveld, M. v., & Overmars,
M. (2008). Computational Geometry: Algorithms and Applications. Santa
Clara, CA, USA: Springer-Verlag TELOS, 3rd ed. edition.

[Cootes et al., 2000] Cootes, T., Taylor, C., & Manchester, M. P. (2000).
Statistical models of appearance for computer vision.

[Cootes et al., 2001] Cootes, T. F., Edwards, G. J., & Taylor, C. J. (2001).
Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell., 23,
681–685.

[Cootes et al., 1995] Cootes, T. F., Taylor, C. J., Cooper, D. H., & Graham,
J. (1995). Active shape models: their training and application. Comput.
Vis. Image Underst., 61, 38–59.

[Nordstrom et al., 2004] Nordstrom, M. M., Larsen, M., Sierakowski, J., &
Stegmann, M. B. (2004). The IMM Face Database - An Annotated Dataset
of 240 Face Images. Technical report, Informatics and Mathematical
Modelling, Technical University of Denmark, DTU, Richard Petersens
Plads, Building 321, DK-2800 Kgs. Lyngby.

[Shlens, 2009] Shlens, J. (2009). A Tutorial on Principal Component Anal-
ysis. Technical report, Center for Neural Science, New York University.

[Sonka et al., 2007] Sonka, M., Hlavac, V., & Boyle, R. (2007). Image Pro-
cessing, Analysis, and Machine Vision 3rd Ed. Thomson-Engineering.

28

