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Abstract—In this paper we present a novel approach to vine
cane segmentation. We present a formal definition of a vine cane
segment and describe an algorithm to find an approximation of
a full cane segmentation for a 2D vine image. We have called the
algorithm Binary Image Scanning - BIS, since it scans a binary
image collecting vine sections of vine pixels in both directions,
horizontal and vertical. The two scans are processed to form cane
segments and are merged to a full cane segmentation. We show
results of our cane segments to match skeleton curves obtained
with morphological thinning, and we compare both methods to
match ground truth data of vine images. Our method achieves
better precision than thinning skeletonization, which from prior
research is known to be the best skeletonization method to model
vines [1], [2]. We also discuss ideas to further extend our findings
in the future.

I. INTRODUCTION

In this paper we describe a new method to perform the
segmentation of canes of grape vine binary images (see in
Figure 1). The segmentation is to be used to infer the 2D tree
structure of the vine. The 2D structure is to be used by a vine
pruning robot to reconstruct 3D model of vines.

Modeling and extracting each cane segment separately will
allow us to observe and analyze the vine from a high level
vision perspective. For instance, in Botterill et al. [3] we are
currently researching bottom up/top down methods to parse
vine images and recover the underling 2D structure. Here the
terminals of the parsing tree for a given input image would
correspond to the cane segments or furthermore to the pixels
that form up these segments. In [3] the authors reported that
the method could be improved by detecting directly cane
segments. Therefore, here we are interested in defining what
a cane segment is and in developing an algorithm to extract
them directly given an input image. The algorithm should be
also consistent between different vines, and efficient enough
to be used on image sequences.

Our main contributions on this paper are firstly, a formal
definition of cane segments which is related to skeleton curves;
secondly a constructive algorithm that find approximately all
cane segments of an input vine binary image; and finally
comparative results of our canes segments versus skeleton
curves to match ground truth vine data.

The rest of this document is structured as follows. Section
II reviews other research on vine modeling and or methods
that are relevant to this topic. The main contributions of this
paper as described before are presented in Section III. We also

show results of applying our method to match ground truth
data in comparison to skeletonization in Section IV. Finally,
Section V presents a conclusion, limitations and improvements
of our method in the future.

II. RELATED RESEARCH

This research is related to segmentation on binary images
and skeletonization methods. In particular, cane segmentation
has been researched before in Marin et al. [4] and Botterill
et al. [3]. In [4] the idea is to automatically cluster together
all vine pixels that conform to one cane by learning a mix-
ture of Gaussians with a custom split-and-merge expectation
maximization algorithm. The method works well in recogniz-
ing different cane parts. However, these cane regions in the
same output segmentation are not consistent with a common
definition. This means some recognized canes may include
overlapping sections or holes in between, while many others do
not. Instead, our scanning algorithm construct approximations
to cane segments that conform to a formal definition of cane
segment (Section III-A). This ensures the consistency of the
output which we think is a desirable characteristic for using
the output as primitives in a grammar, for inferring the vine
structure.

In [3] the authors showed promising results of bottom-up
parsing of cane segments. These segments are extracted by
simplifying edge polylines using the Ramer-Douglas- Peucker
algorithm [3]. Here a hierarchical bottom-up representation is
carried from cane edge segments, to full cane contours, then to
cane parts, and finally to complete canes. The method makes
use of SVM, to help in deciding which two pairs of parts
should be joined or not. Results were reported to be limited to
the training procedure [3]. Future research on this technique
points into looking at alternative primitives. Our research can
be seen as an alternative method to compute cane segments
directly. These cane segments could be incorporated into an
existing bottom up/ top down vine parser and then are useful
for recovering 2D vine structures on images.

Our binary scanning algorithm and our cane segment defi-
nition are related to medial representations and skeletonization
methods [5], [6]. Our resulting cane segmentation output can
be seen as a medial representation of parts of the vines, plus
information of width, orientation and segment assignments
per pixel. In contrast, skeletonization methods do not have
any other information apart from the skeleton points and
sometimes distance to border. Nevertheless, skeletons are a
natural representation of articulated object shapes, and so, have



Fig. 1. From left to right: Input vine image, vine binary map, and result of cane segmentation with our BIS algorithm (see section III).

been used extensively in plants and trees modeling research.
Approaches for constructing 2D skeletons from binary images
are usually adaptation of morphological thinning algorithms,
ridge finding, medial axis transform or hybrid methods [1],
[7]–[9]. Gittoes et al. [1], [2] performed a quantitative analysis
of the use of these methods for modeling vines. The authors
found that skeletons that results from using the medial axis
transformation are in general disconnected along the edges,
while skeletons found by finding ridges are disconnected at
branching points. Also, skeletons found with steerable filters
are connected depending on the size of the filter. The author
concluded that thinning skeletonization methods are the most
suited for modeling vines given that connectivity is assured.
However, thinning algorithms tend to create spurs that do
not match the underlying vine structure, and so they cannot
be used directly for modeling the vine hierarchy. In our
research, skeleton curves are used to define cane segments.
This definition of cane segment and our full cane segmentation
scheme are described in the following sections.

III. VINE IMAGE SEGMENTATION

In this section we will describe a novel method to vine
image segmentation. Figure 1 shows the output of our algo-
rithm. We have as an input a vine binary map we will denote
by I . This map is extracted from a full color vine image with
methods that are out of the scope of this paper. We will start
by giving a formal definition of the type of cane segments we
want to find, and then we proceed to describe our algorithms
for cane segmentation.

A. Preeliminaries

A vine consists of many individual branches called canes.
A cane grows from the root of the vine and may have many
branching points from which other canes grow. As shown in
Figure 2, we can associate a skeleton curve to a given vine
binary image [5], [6]. There are many ways in which skeleton
curves can be defined and computed [6]. An ideal skeleton for
vines should be insensitive to noise in the vine border, which
often appear during the computation of the binary map. Also,
the ideal skeleton is connected and must be composed of only
three types of points: interior, junctions and end points, relating
directly to the cane’s hierarchy. Here we will assume we

Fig. 2. Cane segments: From left to right, we have an input color cane image
and its binary map. The ideal skeleton curve should match the vine topology
and be composed of three types of points, interior (red), junctions (yellow)
and end points (green). Finally, cane segments are shown in different colors.

Fig. 3. Illustration of vine normal sections. Skeleton curve l is shown in red.
The other portions of the skeleton that are not considered are shown in gray.
Ll
⊥(t) is shown in green, with Vl(t) = Ll

⊥(t)∩ V shown in blue. The dark
blue represents the vine normal sections V l

⊥(t) of l(t).

can compute such and ideal skeleton curve. Detailed research
on this topic can be found on [6]. In our approach to cane
segmentation, we further divide each cane into parts we call
cane segments. A cane segment is a maximal part of a cane
such that the skeleton curve restricted to this subset posses
diameter variations bounded.

Formally, in continuous space R2 we will have skeleton
curves l with parameter t. Here l denote a portion of the



skeleton that is composed only of interior points. A detailed
study of local geometry of these curves can be found on
Chapters 1 and 3 of [6]. In our method, we define a diameter
variation function r(t) using vine normal sections to l, as
follows. Denote by V ⊂ R2 the set of vine points and by
Ll
⊥(t) the space generated by the normal vector n(t) at l(t):

Ll
⊥(t) =

{
(l(t) + λn(t) ∈ R2/λ ∈ R

}
. A collection of vine

sections associated to l at t is the intersection

V l(t) = Ll
⊥(t) ∩ V (1)

The vine normal section V l
⊥(t) ⊂ V also associated to l at t is

the connected component of the point l(t) in V l(t) (see Figure
3). We define r(t) as the diameter of the set V l

⊥(t).

Now, we fix a value Tr ∈ R that we will call the
diameter variation bound, and we define a cane segment S as a
connected subset of vine pixels with a skeleton curve l(t), with
parameter t and r̄S the mean diameter variation satisfying:

1) Maximality: There is no other cane segment Ŝ such
that S ⊂ Ŝ.

2) Bounded Diameter Variations-BDV: |r(t)−r̄S)| ≤ Tr
for all t.

Cane segmentation on a vine image can now be stated as:
Given a vine binary map I and a diameter variations bound
Tr, find all cane segments S according to the definition written
above. Observe that the set of cane segments on which we
can divide a cane is relative to the value of Tr. A value
of Tr = 0 will segment a cane into portions with constant
radius. However, canes in images present variations in radius
due to the presence of vine buds, depth variation, and due to
overlaps with other canes. Furthermore, the binary vine map,
which is found by background segmentation, will generally
have aliasing artifacts at the vine boundary and this will imply
small radius perturbations for sections of the same cane. In
our experiments (SectionIV) we used Tr = 0.25 meaning we
allow sections of a cane segments to be at most 25% of the
mean diameter value. In the rest of this section we describe a
method to approximate a full cane segmentation for an input
vine binary image.

B. Binary Image Scanning Algorithm

We would like to find all cane segments S for a given
vine binary image I and a fixed diameter variation bound
Tr. For this, we could start by finding the skeleton curves
in I and then use a segmentation technique such as K-means
or Expectation Maximization to group together vine normal
sections according to diameter variations along the skeleton.
However, there are some problems with using this procedure.
Firstly as researched in [6], skeletonization is hard to achieve
consistently given its sensitivity to details in the boundary
representation, that is, the same object could have different me-
dial branching topology in function of small perturbations on
the boundary. Secondly, skeletonization methods are not well
suited for modelling vine canes [1], [2], since most of these
methods produce disconnected outputs. Finally, algorithms
that guarantee connected skeletons, like thinning methods, are
biased to create spurs that does not match the underlying
vine topology [2]. That said, generating a skeleton that match
exactly a vine binary image I is a complex unsolved problem.

Therefore, in this paper we propose a novel scanning algo-
rithm to approximate cane segments. For this, we group vine
normal sections according to radius and centre dislocations.
The core idea of our method is that instead of using skeleton
curves for finding these vines normal sections, we make use
axis aligned lines in horizontal and vertical directions. We
will see in Section IV experimental results showing that the
cane segments found in this way will define curves that
are approximations to the true skeleton curves. In summary,
our method has two main stages. First we scan twice I
to approximate cane segments in directions horizontal and
vertical respectively; and second we use both segmentations
and discard bad approximations according to a criterion we
will define in Section III-B2. We will describe these two stages
in the following.

1) Axis Aligned Vine Sections Scanning: In Eq. 1 we found
a collection of vine sections associated to a skeleton curve l.
However, skeleton curves that represent well canes are not
available as explained in the introduction to Section III-B.
Instead, we use axis aligned lines, and thus we find vine
sections oriented horizontally and vertically respectively. After
finding these vine sections, we can construct approximations to
cane segments by grouping vine sections according diameter
variations (See Figure 4). The description that follows is ded-
icated to horizontal oriented vine sections, being the vertical
version analogous.

Denote by nr and nc the number of rows and number of
columns of I respectively. In the following we proceed to work
in the discrete domain of pixels of I . Taking t ∈ {1, 2, ..., nr}
we define horizontal lines as

LH(t) = {(t, c)/c ∈ {1, 2..., nc}} (2)

and analogous to Eq. 1 we can find the collection of horizontal
vine sections at row t by

VH(t) = LH(t) ∩ V = ∪kt

k=1V
k
H(t) (3)

where each V k
H(t) is a connected and horizontally oriented

vine section, and k is an index for connected components of
VH(t). As before, the diameter rkH(t) is defined as the diameter
of V k

H(t). Figure 4 illustrates these definitions.

Fig. 4. Illustration of vine normal sections with axis aligned lines. LH
⊥ (t) and

LV
⊥(t) are shown in green, with VH(t) and VV (t) shown in blue. The dark

blue represents the vine sections V k
H(t) and V k

V (t) respectively. Collecting
vine sections aligned with the axis will allow approximating cane segments.

To construct approximations to cane segments, we aim to
group together vine sections according to diameter variations.
Suppose you have a group S of vine sections that satisfy
the BDV condition of the cane segment definition. Then, we
can continue growing S by inserting vine sections V k

H(t) that
satisfy |rkH(t)− r̄S | ≤ Tr, thus keeping the BDV property on



Data: Binary vine image I
Result: Array of cane segments SH with horizontal

vine sections

Initialize SH to empty array;
for t← 1 to nr do

Find VH(t);
foreach V k

H(t) in VH(t) do
if r==1 then

insert to SH a new segment S with a
single vine section V k

H(t) ;
else

compute S∗ = min
S∈SH

{
R(rkH(t), r̄S)

}
;

set c∗ to the center of the latest vine
section in S∗ at row t− 1;
if c∗ exist; and R(rkH(t), r̄S∗) ≤ Tr;
and D(ckH(t), c∗) < Td then

insert cross section V k
H(t) to S∗;

else
insert to SH a new segment S with
a single vine section V k

H(t) ;
end

end
end

end

Algorithm 1: Horizontal Vine Sections Scanning

S. In our cane segments approximations we modify this by a
relative diameter variations condition

R(rkH(t), r̄S) =
|rkH(t)− r̄S |

max
{
rkH(t), r̄S

} ≤ Tr (4)

This allows S to grow relative to the average diameter of S.
This condition alone is however, not enough for guaranteeing
S is a cane segment, since unconnected sets can be formed.
Therefore, we will impose two more connectivity conditions.
The first one is that the candidate vine section V k

H(t) to insert
to S should be at a row consecutive to some vine section of S.
This ensures that vine sections are connected along the vertical
direction. The second connectivity condition is a bound on
the horizontal dislocation of the centers of the vine sections
of S. The relative horizontal dislocation condition between
the centers ck1

H (t1) and ck2

H (t2) of vine sections V k1

H (t1) and
V k2

H (t2) respectively, is defined as

D(ck1

H (t1), ck2

H (t2)) =

∣∣∣x(ck1

H (t1))− x(ck2

H (t2))
∣∣∣

max
{
rk1

H (t1), rk2

H (t2)
} < Td (5)

where x(.) means the column value in I of the argument. This
new condition does not have to be satisfied by all pairs of vine
sections of S like the BDV condition, but instead, it must be
satisfied only by pairs of vine sections that have consecutive
rows in S. This second condition ensures consecutive vine
sections are dislocated relative to each other at most by a value
Td. In our experiments we used Td = 0.25 which means that
consecutive vine sections have dislocation at most of 25% of
the maximum diameter among both sections.

We can now develop an algorithm to approximate cane
segments by grouping together vine sections of adjacent rows
according to diameter variations and centre dislocations. This
is an iterative procedure presented in Algorithm 1. We denote
by SH the array of all horizontal cane segments, initially
empty. We start by finding VH(1) and for each V k

H(1) we
insert a new cane segment S in SH composed of this single
vine section. Then, for each of the subsequent rows t, we test
whether the current V k

H(t) could be inserted to every segment
S in SH by using Eq. 4 and Eq. 5. If it can be inserted to more
than one S in SH , we insert it only to the one that minimizes
the values of Eq. 4 and 5. If it cannot be inserted to any S,
then a new cane segment S with this single vine section is
inserted to SH . The algorithm ends when all the rows have
been processed.

2) Goodness of Segments: In this subsection we give a
condition of goodness for segments S found using Algorithm
1. This is done by characterizing the shape of S. Denote by
nS the number of axis aligned vine sections of S, and r̄S the
mean diameter variation. We say that S is degenerated when

nS < Tsr̄S (6)
nS < Tn (7)

where Ts controls the proportion of segment’s length to
average thickness; and Tn that controls the minimum number
of vine sections in S. Note that we thresholded the proportion
of length to average thickness given that in general real cane
segments posses this tubular shape restriction. Both Ts and
Tn are constant parameters we tune in our system. In Section
IV we show the values we used in our experiments. Figure
5 shows the result of discarding bad segments after using
Algorithm 1.

3) Full Cane Segmentation: In the previous subsection we
saw that by using Algorithm 1 in one axis, some segments S
are degenerated according to Eq. 6. This means that after one
scan, by discarding degenerated segments, some regions of the
vine will not be associated to any segment, even though some
of these regions may still be real cane segments (See Figure
5 (c) and (d)). Therefore, we designed a set of operations to
perform full cane segmentation by using scans in horizontal
and vertical directions and discarding degenerated segments.
Figure 5 shows this process. First we scan in the horizontal
direction and discard degenerated segments. Then we scan
in the vertical direction the portion of the vine pixels that
is not represented by the horizontal segments. Finally, we
discard degenerated vertical segments to achieve a full cane
segmentation.

This way of merging scans in both directions ensures that
non of the segments with overlap with each other. Also, note
that in the final result still some portions of the vine pixels
will not be associated to any segment. However, this portions
now will conform parts of the vine that cannot be represented
with either horizontal or vertical segments. We found that these
portions are in general regions of complex occlusions between
canes or noise of the binary map. In our system, we further
include in our segmentation, connected components of these
regions, and we called them unassigned regions. We included
them on the segmentation output because we think they may
be useful as primitives together with the cane segments, for
using in a bottom up / top down vine structure parsing system.



(a) Input Binary Image. (b) Horizontal scan cane segments.
(c) Horizontal scan cane segments after dis-
carding degenerated segments.

(d) Unassigned vine pixels after horizontal
scan. (e) Vertical scan cane segments.

(f) Vertical scan cane segments after discard-
ing degenerated segments.

(g) Full Cane Segmentation . (h) Unasigned Regions .

Fig. 5. Full Cane Segmentation Process: An input binary image (a) is scanned horizontally to get (b). The degenerated horizontal cane segments are discarded
to achieve (c) and the vine pixels left unassigned (d) are scanned vertically (e). Then, discarding vertical degenerated segments (f) we merge both horizontal
and vertical canes segments to achieve full cane segmentation (g). Unassigned regions of pixels after the merging are shown in (h). Parameter values for the
scanning algorithm were: Tr = 0.25, Td = 0.25, Tn = 5 and Ts = 0.66.

These unassigned regions together with a full segmentation are
shown in Figure 5.

IV. RESULTS

To evaluate our method we performed two experiments.
Firstly we compared our scanning algorithm to skeletonization
for matching manually annotated ground truth vine data.
Secondly, we measured the error between our cane segments
center points to skeleton curves. For all our experiments

we used morphological thinning skeletonization, since as re-
searched before in [1], [2] is the best skeletonization approach
for modeling vines. Also, the set of parameters used for all
our experiments was Tr = 0.25, Td = 0.25, Tn = 5 and
Ts = 0.66. These values were setup heuristically.

Ground truth data is composed of a set of real vine images
that have canes manually annotated as polylines. Therefore,
given a curve to represent the canes (found by either skele-
tonization or our method), we can measure precision and



(a) Precision comparison per image frame. (b) Recall comparison per image frame..

(c) Unassigned vine pixels after horizontal scan. (d) Vertical scan cane segments.

Fig. 6. Tr = 0.25, Td = 0.25, Tn = 5, Ts = 0.66.

recall of this curve to match the ground truth polyline. In our
experiments this matching is done per point in the curve. A
point in a curve is correct if it is at most in euclidean distance
dp pixels away from the ground truth polyline. Figure 6 (a),
(b) and (c) shows precision and recall results with dp = 5
pixels, of both skeletonization and of our method curves which
are formed as the center points of all vine sections of a cane
segment. Precision and recall measurements per frame are
shown in (a) and (b). We can see that our method achieves
better precision in every frame compared to skeletonization.
On the other hand our method has the worst recall, since on
regions of cane occlusions our method generate unassigned
regions which doesn’t have associated any cane curve, and
thus on these regions the ground truth polylines are not well
matched with our method. Figure 6 (c) shows precision versus
recall of all frames.

Finally, to assert the quality of our cane segments found
by axis aligned vine sections, we matched our cane segments
to skeleton curves. This was done per cane segment, and we
measured the averaged euclidean distance of the centers of the
vine sections of a cane segment to the skeleton points and
vice versa. Figure 6 (d) shows results of the percent of cane
segments that have average distance to skeleton curve (blue)
and from skeleton to vine section centers (red), in less than 1

, 2, and 3 pixels respectively. We can see that with an error
of at most 3 pixels, 99% of our cane segments center curves
approximates skeleton curves.

V. CONCLUSION AND FUTURE WORK

This paper described the Binary Image Scanning BIS
algorithm that is able to perform cane segmentation of vine
images. The algorithm constructs vine segments in horizontal
and vertical directions that approximates real cane segments.
We have showed results that our method has greater precision
compared to morphological thinning skeletonization to match
manually annotated ground truth vine data. Our method also
obtained worse recall that skeletonization due to the vine
overlapping regions that are found to be unassigned to any
cane segment by our scanning procedure. Finally, we showed
that the center curve of our cane segments is 99% similar to
this kind of skeleton curve of the vine binary map,

A natural direction of research is to develop a framework
to analyze the error in approximating the ground truth cane
segments according to our definition. In our method, different
segmentations can be achieved by changing the parameters
Tr, Td, Tn and Ts. Thus, such error analysis could help
in determining the best set of parameters to obtain the best
possible solution using the BIS algorithm.
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