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Abstract—With the goal of recovering the 2D tree structure
present on grape vine binary images, in this paper we propose
to use Mixture of Gaussians for canes segmentation. The main
idea behind our approach is to use information criteria from
model selection theory to guide directly the split-and-merge steps
for learning Mixture of Gaussians via Expectation Maximization.
A novel information criteria we found experimentally is able to
adapt to canes at different image scales. We show results of cane
segmentation using our criteria in comparison to standard ones
as Akaike and Bayesian information criteria. Finally we provide
directions on how this work could be extended in the future.

I. INTRODUCTION

In this paper we focus on segmentation of canes of grape
vine binary images (see in Figure 4). Such segmentation can
be used for estimating and describing the hierarchy of the vine.
With this goal, we have developed a method that fit a mixture
of Gaussian models to the vine images, learning automatically
an appropriate number of components and being flexible at
different image scales.

Mixture of Gaussians (MoG) are a powerful tool for
clustering and data analysis in image processing and com-
puter vision. In particular, by using a maximum likelihood
approach and the Expectation Maximization (EM) algorithm,
it is possible to recover the most likely mixture of models
that describes some target data. A hard problem in such fitting
procedure is the selection of number of components in the
mixture, which has to be fixed for running EM. A single
component is not enough for most target data, and a com-
ponent per data point does not provide any new information
on the relations between points. The appropriate number of
components is located between these two extremes. Now, from
a probabilistic perspective the ideal would be to select the
number of components that maximizes the likelihood of the
data. However, the difficulty arise as the likelihood increase
proportional to the number of components, and so the need
for regularization methods for learning MoG using a maximum
likelihood approach.

The selection of the number of components is not the only
issue known for fitting mixtures to data. In [1] Ueda extended
the EM algorithm with split-and-merge steps to avoid local
maximum convergence. Though the method still requires a
fixed max number of models, researchers have used model se-
lection techniques for choosing this value automatically before
running the full split-and-merge EM [2], [3]. In turn, model
selection is known to successfully rank a set of candidate
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probabilistic models in order to choose the most appropriate for
representing target data. This is done by comparing candidates
with respect to a measure of goodness of fit to an underlying
ground truth model.

Rather than using model selection for choosing a maximum
number of components, in this paper we propose the use of
model selection criteria directly for split-and-merge decisions
together with an EM algorithm for automatically find the
number of components of a MoG. This approach together
with a new information criteria we have found experimentally
are able to automatically find a scale invariant number of
components according to the number of canes present in the
vine image.

The rest of this document is structured as follows. Section
II reviews the background theory relevant to our method.
Section III presents our methods and experimental findings.
We show results of applying our new information criteria
in comparison with the standard ones in Section IV. Finally
Section V presents a discussion and describe ideas that could
be used for improving our method in the future.

II. BACKGROUND

In this section we present previous work and background
theory on MoG, EM and model selection. The set of data
points will be denoted by D ⊂ R2 and will correspond to
vine pixel locations of the input binary images.

A. Mixture of Gaussians

Given a parameterized family of Gaussian distributions
{P (x|θk)} defined for x ∈ D, a K-component MoG is defined
as a convex linear combination

fK(x|Θ) =

K∑
k=1

αkP (x|θk)

where αk ≥ 0 are the mixing weights summing to one, Θ =
(θ1, α1, . . . , θK , αK), and each P (x|θk) is called the k-esim
component of the mixture. Assuming independence of points
in D, the log-likelihood of the mixture is computed as

LfK (D,Θ) =
∑
x∈D

log fK(x|Θ). (1)

MoG are successfully used for clustering. In this context
first we maximize the log-likelihood over D

Θ̂ = argmax
Θ

LfK (D,Θ) (2)



and then for each x ∈ D we choose its cluster k∗x as the one
that maximizes the posteriors

k∗x = argmax
k∈{1,...,K}

{ α̂kP (x|θ̂k)∑K
j=1 α̂jP (x|θ̂j)

}. (3)

There are some considerations that have to be taken when
performing clustering using MoG. In particular we need
methods for the optimization in (2) and methods for selecting
the number of components K to be used when defining the
mixture. We will talk about this issues in more detail in the
following subsections.

B. Expectation Maximization

The maximization of the log-likelihood in Eq. (2) is in
general a complex task, given the non-convexity inherent
in the Likelihood function (1). An standard framework that
helps in this process is EM. Some of the main drawbacks
of this method are guaranteeing convergence only to a local
optimum, and being unstable with respect to initialization. A
common practice to overcome these issues is to perform EM
several times with random initialization of the parameters.
This will generate a family of mixtures {f1

K , . . . , f
l
K}, each

mixture with an associated maximum log-likelihood value
{Lf1

K
(D, Θ̂1), . . . , Lf l

K
(D, Θ̂l)}. Finally, the best mixture for

the data will be the one that maximizes its likelihood value
among the others. We will call this heuristic method EM with
random re-start.

C. Split-Merge EM

The EM algorithm can be extended to perform clustering
with variable number of components. This is done by adding
two more steps for splitting and merging components of the
mixture, thus increasing and decreasing K automatically. This
method was introduced in Ueda [1] as a way to avoid EM
convergence to local maximum. The idea is that components
that are redundantly describing a part of the data should be
merged, while components that under-fit its associated cluster
of data should be split.

There exists different criteria for splitting and merging
components. The most used split method reported in the
literature is based on the local Kullback divergence (Local KD)
defined to measure the discrepancy between a component and
the local data density [1]. If this measure is high with respect
to that of the other components, then the component should be
split. Similarly, other criteria for splitting components include
measures of entropy [3], [14], [15], log-likelihood differences
[16], harmony level [19], minimum description length MDL
[2], and a test for multivariate normality via the Kolmogorov-
Smirnov test [17].

In turn the most used criteria for merging components is
a measure of component correlation. Ueda [1] observed that
when most of the points in a single cluster have posterior
probabilities in Equation (3) high and similar for more than one
component, then these components should be merged. Other
merge criteria include again Local KD [10], [15], Max Entropy

For a detailed explanation of EM in the context of computer vision and
statistical inference, and implementation details see [4].

[16] and a local analysis on the improvements of a modified
Log-Likelihood [18].

There exist multiple ways to incorporate these criteria to
the EM framework as well. The standard split-and-merge steps
are [8]:

Split Step: Iterate through all components, rank them
according to the selected split criteria, and split the one with
highest rank.

Merge Step: Compare all pairs of components, rank them
according to the selected merge criteria, and merge the pair
with highest rank.

These new steps are often added after the EM process has
already converged. Denoting by S the split step, by M the
merge step, and by PEM a partial EM step corresponding to
the use of E and M steps only for the new components; the
standard outline of the split-and-merge EM cycle is [8]:

EM → S → PEM → EM →M → PEM

Here partial EM steps are added after a split/merge operation,
in order for the new components accommodate in respect to
the other unaffected components. An important observation
here is that a common acceptance test for new models consist
on comparing the log-likelihood values of the mixture after
and before either split or merge steps [3], [8], [15]. This test
allows for another way to stop the whole process, by checking
whether there are no more components to split or merge.

To finalize the background section, we will talk about
existing methods for identifying an appropriate number of
components K on a MoG. Split-and-merge EM approaches
usually need a fixed maximum number of components, used
for convergence purposes. Though this number can be found
using model selection criteria as in [2], [3], we will see in
Section III-A that we can use these criteria directly for split-
and-merge decisions.

D. Choosing K - Model Selection

Given D fixed, Model Selection is the procedure of select-
ing the best model that describes D from a set of candidate
models. This selection procedure relies heavily on a measure of
goodness-of-fit of a particular model to the data set. In the con-
text of MoG, the set of candidates is a family {fK1

, . . . , fKl
}

obtained by varying the number of components K, and model
selection refers to finding the best choice of K for the data.
In a similar fashion to EM with random re-start, one may
think that given this family, the best mixture will be the one
that maximizes among the associated maximum likelihoods.
However, this may lead to over-fitting one model per sample
point, since in general increasing K will increase LfK . This
can be seen as equivalent to making the measure of goodness-
of-fit equal to the maximum likelihood value associated to the
mixture.

There exists numerous methods for choosing K while
avoiding over-fitting [5]–[7]. In this sense, state of the art
methods rely on information criteria that estimates the infor-
mation loss caused by describing the data with a candidate
mixture in place of the underlying ground truth model. Some
of these criteria are listed below. Here the maximum log-
likelihood value will be abbreviated to LfK := LfK (D, Θ̂),



and we denote by PK the number of parameters of a mixture
fK , n is the sample size |D|, and AIC, AICc, and BIC
stand for Akaike [5], Corrected Akaike [6], and Bayesian [7]
information criteria respectively:

AICfK = 2(−LfK + PK)

AICcfK = AICfK +
2PK(PK + 1)

n− PK − 1
BICfK = −2LfK + PK log n

Denoting by ICfK any of these criteria, model selection
among the family {fK1

, . . . , fKl
} is performed by

K∗ = argmin
K∈{K1,...,Kl}

ICfK

and fK∗ will be the best fit for the input data.

III. METHODS

We begin by showing that the information criteria seen
on Section II-D can be used for split-and-merge operations.
Then we analyze their relation to likelihood ratio tests. This
will allow us to experiment and further define a novel model
selection criteria suitable for segmenting canes on vine images
via split-and-merge EM.

A. Split-and-Merge EM Using Information Criteria

Instead of using model selection for finding a maximum
number of components as in Section II-D, we can further use
it directly as a decision for splitting and merging components.
Let Ck ⊂ D be the cluster of data points associated with the
k-esim component. To decide if this component should be split
we can construct two mixtures f1 and f2 with one and two
components respectively, and fit them to Ck using EM. Then,
using model selection we can decide how likely this cluster is
better represented by one or two components:

ICf2 < ICf1 =⇒ SPLIT

where IC could be replaced by any of the model selection
criteria seen Section II-D. For merging two components k1

and k2, we can repeat the process by using EM to fit f1 and
f2 to the union cluster Ck1,k2 = Ck1 ∪ Ck2 , and then:

ICf1 < ICf2 =⇒ MERGE

Observe that the construction and fitting of the two test
mixtures f1 and f2 can be done using EM with random re-
start, and their parameters can be used when incorporating the
new components to the global mixture; except for the mixture
coefficients, since the global mixture may have more than two
components. In our experiments, if a component with mixture
coefficient αk is split in two, then the new mixture coefficients
can be both initialized to be 0.5αk. Similarly we initialized
to αk1 + αk2 a new component that resulted from merging
components k1 and k2. This initialization will ensure that all
αk in the global mixture sum to one.

In this way, to perform a complete Split-Merge EM we
can start with an arbitrary number of components and follow
the outline of the standard algorithm but now using model
selection to guide the process. Note that we do not impose
a fixed maximum number of components though this can be

incorporated as well if desired. Also note that we don’t use
any ranking to split or merge components like the methods
mentioned in the previous section, but rather our method allows
to analyze each component separately. Finally, the convergence
of the algorithm can be defined using the convergence of the
global log-likelihood values, or where there are no more split
or merge operations to be done. Observe that in this way of
using model selection, the algorithm will ensure that increases
in the likelihood happens locally at all clusters, in contrast to
using model selection on two different global MoG.

B. Analysis of Information Criteria for Split-and-Merge

In this section we analyze in general the model selection
technique we described in the previous subsection for split-
and-merge decisions. Given a set of data points D and two
mixtures fK1

and fK2
for which we have computed the max-

imum likelihood values LfK1
and LfK2

over D, consider the
problem of deciding which of the two mixtures fits better the
data. Let’s further assume that if PK1 and PK2 are the number
of parameters of each mixture respectively, then PK2 = mPK1 .
As described in the previous subsection, we can use model
selection over these two mixtures. For instance, if using AIC
then we know that fK2

is a better fit than fK1
if

AICfK2
−AICfK1

< 0

2(−LfK2
+ PK2

)− 2(−LfK1
+ PK1

) < 0

LfK2
− LfK1

> (m− 1)PK1

Therefore, fK2
is better fit than fK1

if the increase in the
likelihood LfK2

is more than the increase in number of
parameters from fK1

. Similarly, using the AICc and BIC
criteria, we can find

AICcfK2
−AICcfK1

< 0

LfK2
− LfK1

>
n(n− 1)(m− 1)PK1

(n− 1)2 − (n− 1)(m+ 1)PK1 +mP 2
K1

and

BICfK2
−BICfK1

< 0

LfK2
− LfK1

>
(m− 1)

2
PK1

log n.

Thus, in the special case of PK2
= mPK1

, these informa-
tion criteria can be seen as a part of a family of criteria with
a threshold function T in the increase in the log-likelihood

LfK2
− LfK1

> T (PK1 , n,m) (4)

There are some interesting things about this equation. First,
the left hand term is proportional to the likelihood ratio,
and thus the equation can be seen as a likelihood ratio test
parameterized by T . Secondly, if we put T ≡ 0 then the
goodness-of-fit is going to be exactly the maximum likelihood
values LfK . In particular when m = 1, that is, both mixtures
have the same number of parameters, T vanishes for all the
criteria seen so far. This is exactly the method used in EM with
Random re-start, when all mixtures have the same number of
parameters and we take the mixture with the highest maximum
log-likelihood value. Moreover, the comparison of likelihoods
is usually used as an acceptance test for split or merged
components in standard split-and-merge EM algorithms [3],



Fig. 1. Maximum log-likelihood difference between mixtures of one and
two components, and its dependency on sample size. The six samples sets are
based on the images of Figure 3.

[8], [15]. Also note the function T taken by any of these
criteria do not depend on the standard deviation of the data D.
However, we have found in our experiments that the difference
of the log-likelihood values do depend quadratically an linearly
on the standard deviation and sample size respectively. Further-
more we found that by using any of these threshold functions
with EM for performing cane segmentation, the results were
affected by scale of the image.

Finally, observe that the constraint PK2 = mPK1 is
in general met for model selection within a parameterized
family of distributions. Here components have always the same
number of parameters, but differ in the actual parameter values.
Thus the condition is satisfied for deciding between K and
mK components. In particular m = 2 is exactly the case
for the split-and-merge criteria that we described in Section
III-A. With the new developments the updated split-and-merge
criteria can be written as:

Lf2 − Lf1 > T (PK1
, n, 2) =⇒ SPLIT

Lf2 − Lf1 < T (PK1 , n, 2) =⇒ MERGE

This together with a custom threshold function we will
define in the next section, will allow us perform split-and-
merge EM with automated model selection for segmenting
vine canes on binary images and which adapts to image scales.

C. Log-Likelihood Difference Dependency on Image Scale

The main idea behind our method comes from the observa-
tion that log-likelihood values in Equation (4) are dependent
on some properties of the input data set D. For instance, it
is straight forward to see from the likelihood Equation (1)
that adding more sample points to D will affect a mixture
maximum log-likelihood value. Furthermore, the likelihood
depends on the standard deviation of the set D as well. To see
this, lets analyze the log-likelihood difference Lf2 − Lf1 for
a set D composed of two cluster of points symmetric around
a point O. First consider what happen to Lf1 of the mixture
with one component, if we move all points in both clusters of
D away from O while keeping symmetry. Since the mean
parameter will remain unchanged, and the data points will
move forward to the Gaussian tails, Lf1 will get lower as we
move. On the other hand, a mixture with two components will

Fig. 2. Maximum log-likelihood difference between mixtures of one and two
components, and its dependency on standard deviation. The six samples sets
are based on the images of Figure 3.

Fig. 3. Test images for experimenting log-likelihood difference dependency
on image scale. Extracted from real vine images.

keep each component centered at each cluster of D even if we
move them as before, and thus Lf2 will remain constant. As
a consequence, the difference of likelihood values Lf2 − Lf1
as in the left hand of Equation (4) is affected by the standard
deviation of D, and it can be made as large as we want.

This fact imply that results of the split-and-merge criteria,
as seen in the previous section, will depend strongly on size
and sparsity of the sample set. We can see this more clearly
in Figures 1 and 2 which shows the maximum log-likelihood
difference between mixtures of one and two components
and its dependency on sample size and standard deviation
of sample sets based on the six images of Figure 3. The
images were scaled from original to up 15 scales with and
increase of 0.5 from the original size. These plots reveals a
linear dependency on sample size and quadratic dependency
on standard deviation. Also they allow us to understand how a
threshold function as seen in the previous section should adapt
to image scales. For instance, consider deciding between a
mixture of one or two components for the images with one vine
cane. Since at any scale we would want not to split a single
component, we see on the graph that our threshold function
should greater that these images log-likelihood differences.
Similar for vines with two canes or more the threshold function
should be less that the log-likelihood differences so that two
components will be a better representation for them. This
implies that by choosing a threshold function in between
the graphs of log-likelihood differences with one and two or
more components, the split-and-merge decisions will remain
unchanged at any scale. Also note that none of the threshold
functions associated to AIC, AICc and BIC satisfy this, and
thus they will not generalize well at different image scales.

To construct a threshold function that adapts to image



(a) AICc; T =
5n(n−1)

(n−1)2−15(n−1)+50
. 32 components on both

scales.
(b) BIC; T = 2.5 logn. 32 components on both scales.

(c) Constant threshold function; T = 400. 3 and 14 components
respectively.

(d) Our threshold function; T = 0.1n + 0.01σ2. 16 and 19
components respectively.

Fig. 4. EM with model selection decisions for split-and-merge. At the top row, AICc (a) and BIC (b) over-fit the data set as a result of its threshold functions
being too low and thus splitting almost all components at every iteration. In the bottom row, a constant threshold function (c) perform poorly at a small scale,
whereas our threshold function (d) keeps the number of components almost the same at any scale. All procedures where run with a maximum number of
components of 32, and with 2 initial components, m = 2 and PK1

= 5.

scales, we would like to keep the linear and quadratic de-
pendency on sample size and standard deviation respectively:

T (n, σ) =
1

2
(An+Bσ2) (5)

Observe that we omit the dependency on m and parameter PK1

since they are constant for our split-and-merge decisions with
mixtures with one and two components. The coefficients A and
B could be estimated using the average values of the slope of
the lines of the sample size data, and the average coefficient
of the parabolas of the standard deviation data respectively.
In particular we used A = 0.1 and B = 0.01 for the results
presented in the next section.

IV. RESULTS

We tested the proposed threshold function on vine images
at different scales. Figure 4 shows an example of the results
we obtained. We scaled up the images on the left to ten
different sizes. All EM iterations involved in the experiments
used random re-start for ensuring getting the best convergence
parameters. In general split-and-merge decisions based on
AIC, AICc and BIC tend to split into several components

over-fitting the data sets. This is due to their low threshold
values which allows splitting even for low increases on the
log-likelihood. On the other hand, different constant threshold
functions work well for particular sample sizes and standard
deviations, but don’t generalize well when scaling images,
yielding too many or too few components depending on
whether the image is enlarged or scaled down. In contrast to
this, our threshold function adapts to these changes and keeps
the number of components equal on average.

V. CONCLUSION

We have presented a split-and-merge EM method that
adapts to image scale when learning MoG. We applied the
technique for vine canes segmentation on binary images. The
method could be extended by further analyzing the threshold
function relation to the difference of log-likelihoods of mix-
tures with one and two components. More in general, note that
in many cases the region under consideration for split-and-
merge operations is not well represented by neither one nor
two components. Therefore we could apply model selection
for local clusters with a broader number of components not
limited to two, in order to split them into possibly more than



two components. Thus a sensitive analysis of the threshold
function with respect to m and number of parameters PK1

could be performed, and could help in generalizing the method
to a greater number of components.

Also the learning of the parameters A and B of the
proposed threshold function could be studied more in deep.
We believe they can be learned from data by using regression
methods, or by analyzing directly the difference of likeli-
hoods Ldiff = Lf2(D, Θ̂2) − Lf1(D, Θ̂1). We can analyze
its dependency with the size and standard deviation of D
as ∂Ldiff

∂n = An and ∂Ldiff

∂σ = Bσ2. Ldiff is however
highly complex as it involves non-linear optimizations for the
maximum likelihood estimators in Equation (2).

Finally, we can further research image scale dependency for
models other than Gaussians. Though the current method was
developed for MoG, general Mixture of Models may present
image scale dependency with respect to other properties spe-
cific to the probabilistic model used for of each component.
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