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Abstract—In this paper we are interested in recovering 2D tree
structure of vines from binary images. We propose a bottom-up
approach that firstly segments an input image into cane parts,
and second infer their connectivity by using Gibbs Sampling. Our
approach is similar to previous work on vine structure inference
[1], but instead of the use of heuristics for connecting cane parts,
our method uses Gibbs sampling which has been successfully
used in similar computer vision tasks [2]. We show comparative
results against [1], and we provide directions on how this work
could be extended in the future.

I. INTRODUCTION

A vine pruning robot is using computer vision to recon-
struct 3D model of vines and decide which canes should be cut
[1]. The 3D models are found by matching 2D structures of
vines that are extracted from images taken at different angles.
Our system then decides which canes to leave by analysing
the 3D models and builds a path that the robot arm follows
to make the cuts. In this paper we focus on the extraction of
2D canes structure from grape vine images. Our goal is to
recover the tree structure present in vine images. For this, all
canes must be found, including their position and connections
between them.

Recovering 2D structures of vines from images is a com-
plex task. Figure 1 shows some of the vine image regions
that make estimating its hierarchy a hard problem. Similar
to Botterill et. al [1] our solution uses a bottom-up parsing
of the vine image. However, instead of having as primitives
edge segments, we use a custom cane segmentation based on
a binary scanning algorithm [3] as show in Figure 2. Our
primitives are then cane segments with constant width and
defined local orientation. Finally, we use Gibbs sampling to
infer connectivity.

The main contributions of this paper are firstly a detailed
description of applying Gibbs sampling and cane segmentation
to recover vine 2D structures; and secondly a quantitative
comparison of our method with previous work on 2D cane
structure extraction [1].

This paper is structured as follows. Section II reviews
the background theory relevant to our method, in particular
bottom-up/top-down frameworks are briefly reviewed. Section
III presents our problem formulation and describes how to use
Gibbs Sampling to infer the structure of the vines. In Section
IV we show results of applying our method in comparison with
the current method being used in the vine pruning system [1].

Finally, Section V presents a discussion and describe ideas that
could be used for improving our method in the future.

Fig. 1. Different cane occlusions and connectivity issues. From left to right:
Branching occluded by another cane; cane tips finishing at non background
regions; and multiple canes occluded in the same region.

Fig. 2. Cane segmentation using a binary image scanning algorithm [3]. Left:
Extracted cane segments; Right: Line between the two extreme points defined
for each cane segment. See [3] for a detailed explanation.

II. RELATED RESEARCH

This research is related to bottom-up/top-down approaches
and part-based modeling in computer vision [2], [4]–[12].
In bottom-up/top-down methods, an image is decomposed
hierarchically in constituent visual patterns or primitives in
a bottom up manner [2]. Then a model that encapsulate
relations between these primitives is built, giving a semantic
interpretation of an input image [6]. Similarly in part-based
models, an articulated object is learn as relative positioning
and other relations between its hierarchy parts [11].

Roughly speaking, we can decompose these frameworks
into two fundamental components [2]. The first component has
to do with obtaining the set of primitives or image parts that
we want in our hierarchical model. These standard elements



are based on edges or contour descriptors, segmented parts
of the image, shape descriptors, or even whole detected indi-
vidual objects [6]. Thus methods for this component usually
relates to standard image processing and vision procedures
like segmentation and recognition [2], [8]. For vine structure
retrieval, Botteril et. al [1] used contours to build up a set
of edge segments to represent vines canes. In contrast to this,
our method is based on the cane segmentation described in [3].
This segmentation builds a set of vine clusters with properties
that models real cane segments, like smoothly varying width
and curvature, and consistent local orientation.

The second component has to do with modeling the re-
lations between the set of primitives. Here most works can
be further classified into two main lines of research. The
first models individual articulated objects like humans, cars,
bicycles etc. [5], [11], [13], [14]. The second models high
level relationships between whole objects like for example a
car in a street, or a human riding a bicycle [8], [10], [12], [15].
We note that Image Grammars [6] is a framework that is able
to reason with individual objects representations, and relations
between them at the same time.

Given that relations between the primitives or image parts
in question are usually encoded as graphical models, in gen-
eral hierarchical modeling is related to MAP− Maximum
a Posteriori estimation in vision problems and inference in
probabilistic models [5], [6]. More specifically, given a set of
primitives or image parts of an input image, a configuration
x that establish relations between them is usually found by
maximizing the conditional distribution P (x|I) of the config-
uration given an observed image I [2], [5]. In the Computer
Vision literature, methods that have been used for MAP
estimation are varied including sampling techniques like Monte
Carlo, or optimization frameworks like simulated annealing,
or gradient based methods [16]. Usually, the dimension of the
configuration space is so high that brute force searches are not
computationally feasible [2], and MAP inference is sometimes
an NP hard problem [16].

Another way of treating the relationship between primi-
tives or image parts is to use machine learning [1], [11]. In
Felzenszwalb et. al [11], a deformable part model is learned
by using a database of manually annotated bounding boxes
around the object in question and by reducing the problem to
binary classification that is solved with a modified version of
Support Vector Machines (SVM). Similarly, for cane structure
extraction, Botterill et. al [1] poses the problem of connecting
two cane edge segments as a binary classification problem.
The classifier used is SVM. Other classifiers such as random
forest or neural networks could be trained and used as well [1].

Finally our method makes use of MAP estimation rather
than machine learning. In particular, we model connections
between cane segments as binary variables. Then we use Gibbs
sampling to sample from a joint distribution of all the binary
variables, effectively recovering the most likely connectivity
for our cane segments given the image data. The method is
described in the following sections.

III. CANE STRUCTURE EXTRACTION FROM AN IMAGE

Our cane structure extraction system is divided into two
main subsystems, cane segmentation and structure inference.

Both subsystems are described in the following.

A. Cane Segmentation

In this subsystem we are given a binary image I and our
objective is to find a segmentation C = {sk}, k = 1, ..., n
of the vine pixels, such that each sk have well defined local
orientation, and smoothly changing width and curvature. These
properties have been chosen in order for the cane segments
sk to match real cane parts. Figure 2 shows an example of
a cane segmentation obtained by applying the binary image
scanning algorithm [3]. Each cane segment has an associated
2D curve shown red in this figure. We will denote by pek with
e = 1, 2 the two extreme points of this curve for each segment
sk. These points act like “bonds” defined in image grammars
to connect visual words [6]. For further details on how to
obtain a cane segmentation with the desired properties see [3].
The structure inference system described in the next section
is independent of this cane segmentation, and it can be used
with other segments, with the mentioned properties.

B. Structure Inference

In this subsystem, we have a cane segmentation C as
described in Section III-A, and we are interested in recon-
structing from it the tree structure inherent in the imaged vine.
Observe that this tree like structure can be modeled as a set
of connections between the extreme points pek of the cane
segments. In this case, vine structure extraction can be done by
selecting among the set of all possible connections the one that
satisfy special properties related to vine images, for example,
connection of cane segments of similar thickness and smooth
angle variations between them.

Formally, given a pair of extreme points pek and pe
′

k′ of cane
segments sk, sk′ , we model connectivity between the extreme
points by defining a binary variable

x((k, e), (k′, e′)) =

{
1 pek is connected to pe

′

k′

0 otherwise

Now denote x = (x1, x2, ..., xm) the concatenation of all
binary variables of all extreme points of all cane segments.
We will use the index i = 1, ...,m to enumerate all of the
components of x. Observe that an instance of x encodes
a configuration of all cane segments being connected and
disconnected at their extreme points. Thus for vine structure
inference we are interested in finding a x∗ such that

x∗ = max
x

P (x|I) (1)

where P is the probability distribution of x given the observed
vine image I , which should be modeled to carry vine’s
special properties. This reduces our problem of finding cane
structure to that of MAP estimation, and we can make use
of sampling techniques [17] to estimate x∗. Gibbs sampling
[17] is a method that enable us to sample from an unknown
joint distribution P (x1, ...., xm|I) by using samples of the
conditional distributions P (xi|x1, ...xi−1, xi+1, ..., xm, I) :=
P (xi|x−i, I) and the sequence of samples under regular con-
ditions would become samples of [18], [19]. Algorithm 1
summarize this sampling procedure. We initialize our model to
have all pairs of candidates disconnected. Then, we compute
iteratively the probability of a single connection xi given we



Data: Binary image I , cane segmentation C,
maximum number of iterations T.

Result: Estimate of x∗

Initialize x(0) to string of zeros;
for t← 1 to T do

for i← 1 to m do
compute p = P (x

(t)
i |x

(t−1)
−i , I);

sample u = Unif(0, 1);
if u < p then

x
(t)
i = 1

else
x
(t)
i = 0

end
end

end
set x∗ = xT ;

Algorithm 1: Gibbs Sampling.

know all other cane connectivities x−i. We then update the
connection xi as a sample of a Bernoulli distribution with
parameter p. We repeat this process for all i and we are
guaranteed, under regular conditions, that when the number of
iterations T → ∞ the samples x(t) will belong to the model
posterior P (x|I) [17]. The first samples x(t) may be biased, so
it is common to choose a value t = b, and estimate x∗ using
only t ≥ b. This is called the burning-in period in the Gibbs
sampling framework [18]. Therefore, all that rest here is to
define P (xi|x−i, I) such that it satisfy our vine data.

C. Modeling P (xi|x−i, I)

Given a point pek we restrict the set of candidate points
that can potentially be connected to this point, by filtering to
the points that are within a radius R. We then define a set of
attributes that allow us to model good connections relative to
vine’s structure. Suppose xi represents the connection between
points pek and pe

′

k′ . Given that we know all connectivity states
x−i, we are able to reconstruct canes up to the connection
represented by xi. Denote by c(k, e) the cane passing through
the point pek. For each cane c(k, e), we are able to extract
a set of attributes that we use for modeling P (xi|x−i, I). In
particular we use the angle θi between the segments of each
c(k, e) that ends in pek or pe

′

k′ , as shown in Figure 3. We also
use the Euclidean distance di between these points. Similar to
Botterill et. al [19] we model angles between positive connec-
tions by a normal probability density p(θi) = N (µ, σ) whose
parameters can be learned from ground truth data. Distances di
of positive connections are modeled with a uniform distribution
p(di). Analogously, we can model the distribution of these
attributes but now for negative connections p′(θi) and p′(di).
We used uniform distributions in our experimental results. Now
denote by ai = (θi, di) the concatenation of the attributes
and p(ai) := p(θi, di) = p(θi)p(di), p′(ai) := p′(θi, di) =
p′(θi)p

′(di). Then we can compute P (xi|x−i, I) = P (xi|ai)
by using Bayes formula [19]:

P (xi|ai) =
P (xi)p(ai)

P (xi)p(ai) + (1− P (xi))p′(ai)

di

...

pe
′

2

c(2, e′)

θi

...

pe1

c(1, e)

Fig. 3. Attributes for a connection between a pair of points pe1 and pe
′

2 . For
each point we can use their associated canes c(1, e) and c(2, e′) to compute
the angle θi between the two segments. We also use the Euclidean distance
di between both points.

G. Truth Found Correct Precision Recall

80% Canes Overlap

Gibbs 1093 10348 1009 0.0975068 0.923147
Contour 1093 1355 746 0.550554 0.682525

50% Canes Overlap

Gibbs 1093 10348 1032 0.0997294 0.94419
Contour 1093 1355 859 0.633948 0.78591

50% Canes Length Coverage

Gibbs 1093 10348 1.47e+05 0.141376 0.303813
Contour 1093 1355 1.90e+05 0.510073 0.390673

TABLE I. CANE STRUCTURE MATCHING TO GROUND TRUTH

Fig. 4. Comparative results of extracting canes using our method and the
contour method in Botterill et. al [1].

where P (xi) represents the prior of the connection xi. Observe
that this estimation could be easily extended to use more
attributes between canes ck.

IV. EXPERIMENTAL RESULTS

We assessed our method of Gibbs sampling experimentally
on real vine images that have been manually annotated with
ground truth canes. Figure 5 shows results of canes extracted
using our Gibbs sampling method. We measured precision and
recall for extracted canes matching to this ground truth. A
cane is considered correct if it overlaps with p% of a ground
truth cane, or if it covers p% of the length of the ground
truth cane. We used p = 80% and p = 50% for overlaps
and p = 50% for length coverage. To evaluate our precision
and recall results, we compared our approach to the contour
method by Botterill et. al [1]. All results are shown in Table I
and Figure 4. We have found that our method suffers from low
precision due to the high amount of single canes that do not
get connected together. On the other hand, we achieved higher
recall than the contour method, with 89% and 91% of our canes
matching correctly the ground truth data. We also noted a low
precision in the length coverage. This is a consequence again
that though the canes overlaps satisfactorily to the ground truth



Fig. 5. Canes found by using Gibbs sampling or real vine images. From left to right, on each frame the pruning system extracts the vine structure from three
different perspectives of the same vine. From top to bottom, to different frames of the system. An E in the image represents the ending point of a cane. As we
can see many of the canes remain unconnected.

data, canes recovered by our Gibbs sampling method are only
approximating truth canes by parts.

V. CONCLUSION AND FUTURE WORK

This paper presented an application of Gibbs sampling to
recover canes from vine images. The approach was based on
a cane segmentation of a vine binary map and connectivity in-
ference by sampling from a posterior distribution that modeled
the connections between different cane segments. We applied
our algorithm to real vine data and compare our method to the
one currently being used in our system [1]. We have found
our method improves recall but suffers from low precision
compared to the contour method [1].

Limitations of our approach are the inability to detect

branching points. This is because the connectivity model does
not allow a node point to be connected to multiple other node
points. In the future we aim to classify each point as either a
cane tip, a branch point or a connection point. The connectivity
model would take into consideration this information and may
incorporate another model for relations between different types
of points similar to image grammars [6]. Another limitation
of our approach is that is not able to detect cycles in the
connectivity graph. In the future we aim to address this by
taking into account these cycles on the computation of the
conditional probabilities of Section III-C.

Another way to improve our approach would be to use
more attributes for interactions between cane segments. In
particular canes overlapping connectivity could be enhanced



by using color information rather than only vine pixels of
the binary image. Contour extraction in these regions and
connectivity as modeled in Botterill et. al [1] could be used
together with Gibbs sampling. Finally, alternative methods
for MAP estimation and other structured models could be
researched for vine structure extraction.
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