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Abstract—In this paper we propose a Hidden Markov Model
for modeling and extracting vine structure from images. We
built up from previous research to infer connectivity of cane
segments extracted from binary images. We use skeletonisation
and polylines to model cane segments and we use simulated
annealing to optimize an energy function defined in terms
of attributes observed for each connection. We formulate our
proposed solution in the context of MAP inference which is a
state-of-the-art framework for inference in computer vision. We
show comparative results of our method against state-of-the-art
methods used for the same tasks, and our model generalizes and
improves precision over prior research.

I. INTRODUCTION

In this paper we are interested in modeling and extracting
vine canes from 2D images. See Figure 1 for a description
of the parts that compose a vine. The aim of extracting canes
in images is to aid a robot arm in the process of automatic
pruning that uses vision information. More specifically, canes
recovered in images from multiple perspectives can be used
to rebuilt a 3D model of the vine and help the robot to move
in space and decide which canes to cut [1].

The main contributions of this paper are firstly a novel
model of vine structure using a Hidden Markov Random
Field – HMRF, and secondly results of the extraction of vine
structure from images using Maximum A-Posteriori – MAP
inference.

Extracting canes from vine images is a hard problem given
the many occluded regions and cane’s overlapping that are
present (see Figure 1). To overcome these issues, in this
paper we subdivide canes into several cane segments that
can be observed in images. Then we propose to use a
probabilistic approach to perform inference of connectivity
between these cane segments given evidence attributes such
as angle, dislocation and thickness difference. The inference
problem is formulated in the context of HMRF and MAP
estimation, which are highly used in vision applications [2],
[3]. Therefore, our solution can be seen as the application of
state-of-the-art inference methods in computer vision to the
problem of vine structure extraction.

This paper is structured as follows. Section II reviews
the background theory relevant to our method, in particular
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Markov Models and MAP inference are introduced. Next,
in Section III-B we propose a vine model using a HMRF.
Here we formulate the vine structure extraction as an energy
minimization problem, which is then solve using simulated
annealing in Section IV. We show results of applying our
method in comparison to bottom-up parsing [1] and Gibbs
sampling [4] in Section V. Finally, Section VI provide a
summary of our research and directions on how to extend it
in the future.

II. RELATED RESEARCH

A. Tree Structure Modeling

Tree structures modeling can be either purely topological or
a full description of the growth of the plant. For example, in
a Functional-Structural Plant Model-FSPM defined by Godin
and Sinoquet [5], plant structure is able to simulate how the
plant evolves over time taking into account physic-chemical
processes involved in the growth of the plant and its interaction
with the environment [6]. In our system however, the input
vine images are considered to be always at a stage of pruning,
and therefore there is no need to model evolution over time.

Therefore, our model for vine structure is pure topological,
similar to branching structures, tree-graphs and axial trees [7].
In particular our HMRF model is similar to the method of
Chen and Neubert [8]. Here, tree structure is modeled using a
Markov Random Field–MRF, and the goal is to synthesize
realistic trees from a sketch. However, the Markov graph
is assumed to be a tree, since it is modeled from human
input strokes. Also, the graph is defined in a direct mapping
of graph nodes to branch points and graph edges to branch
segments. Furthermore, differently to my method, the random
variable defined at nodes is the depth of the end tips of branch
segments, in order for the structure of the tree to be in three
dimensions. Therefore, our methods and those of Chen and
Neubert [8], though use the same theory of Markov Models,
differ in both goal and implementation.

In summary, my approach can be regarded as a non-
functional structure model of a vine, similar to axial trees [7],
and such that it uses a MRF model similar to Chen and
Neubert [8] to infer the best tree structure for an input vine
image.



Fig. 1. Vine nomenclature: Examples of canes are shown in yellow. A cane grows from the vine root, shown in green, or from other canes at branching
points, shown in red. Some cane parts may be occluded by other canes and/or scene components. Examples of regions with occlusions and overlapping of
canes are shown in orange.

B. Vine Structure Extraction From Images

Our research can be regarded as further development of the
method of Marin et al. [4] and Botterill et al. [1]. In Marin
et al. [4], the author used a similar approach to infer vine
structure using Gibbs sampling and MAP estimation. Our
methods can be regarded as a generalization of this, where
any Monte Carlo method can be used, as well as any energy
minimization technique. On the other hand, Botterill et al. [1]
used a purely bottom-up approach to extract full canes using
edge segments and machine learning. This method, though use
well trained classifiers for deciding segments connections at
any level of the hierarchy, is heuristic in the sense that there
is definition of vine structure, and quantitative results are yet
to be addressed.

III. HMRF MODEL FOR VINE STRUCTURE

Our HMRF vine model is defined on connections between
cane segments. Therefore, in the following subsections we first
discuss how to model and extract cane segments and then we
proceed to formulate our HMRF model.

A. Cane Segments Extraction

Finding full canes in vine images is hard to do directly,
given the complexity of overlapping and occluded regions.
Therefore, in our approach we further divide each cane into
parts we call cane segments, so full canes can be reconstructed
by solving connections between them. Examples of cane
segments are shown in Figure 2 and Figure 4. A cane segment
is modeled using polylines with a value of cane thickness.
The start and end points of a cane segment polyline may be
referring to a starting point of a cane, a branching point, a end
point of a cane, or a point where occlusion/overlapping starts
or ends.

To find a set of cane segments for an input vine image
we used skeletonisation in a way similar to [9], [10], [11].
Here, best-first-search or Djikstra’s algorithm is used to build

skeleton polylines as paths of minimal distance to a reference
point. However, in our method instead of providing a single
reference point, we iterate using depth-first-search from any
non-visited skeleton pixel, and so we get different skeleton
curves starting in different places. After this, we split each
curve further at junction skeleton pixels– points with more
than 2 skeleton neighbors. The output of this procedure is
a set of skeleton polylines, and each of them is a list of
connected skeleton pixels. Furthermore, we simplified all
polylines by using the Ramer-Douglas-Peucker algorithm with
parameter ε = 1.0. This allowed us to get fewer control
points for representing the original polyline and keep its shape
unchanged [12]. Finally, each simplified polyline is a cane
segment in our system.

The process of finding cane segments works independent
of the skeletonisation method used. There are not assump-
tions about whether the skeleton is one-pixel-wide. However,
accuracy with respect to the true medial axis of the vine
binary map is desired, since the skeleton points will be used to
build up the cane segments. We used the Zhang-Suen thinning
algorithm [13], which is easy to implement, gives the accuracy
needed and is fast enough for our system.

B. HMRF Vine Structure Model
In general, a HMRF model in the context of computer

vision can be designed using the following ideas [2]:
1) Build a Markov Graph. Decompose a target image into

a graph where nodes are pixels or group of pixels, and
edges are relations between them.

2) Define a hidden random variable xi at each node. This
corresponds to the information one is trying to infer, so
it is not observable directly.

3) Define an evidence random variable zi at each node.
They correspond to measurements one can make at each
node (e.g. color information at a pixel).

4) Build a joint probabilistic model for both random vari-
ables xi and zi defined in the two previous steps.



Fig. 2. Markov graph of the vine structure model. On the left, cane segments are shown in red, with end points shown in orange. Connection candidates
between the orange points are shown as green lines. On the right, a node in the Markov graph correspond to a connection between either points in the same
cane segment (double red circles), or points of different cane segments (single green circle). Edges in this graph are set on nodes that share a point in common
(e.g. e1 − e2 is connected to b2 − e1 because they share the point e1).

Fig. 3. Inferred structure for the vine in (a). Here I have two different visualizations of the structure graph. The flow of connections of the vine is shown as
green arrows. On the left, the flow of the vine growing is implicit, since one cannot see directly if the node e1 − e2 is oriented as e1 → e2 or e2 → e1. On
the right the flow is explicit, by taking the visualization on the left and factoring out the green nodes and expanding each red node into single points.

In the following we address each of these items separately.
1) Markov Graph For Vine Structure: The Markov graph

of our model is summarized in Figure 2. Here cane segments
are shown in red and their end points are shown in orange.
The Markov graph is build by using as nodes connections.
A connection is either a link between the two end points of
the same cane segment (nodes in red), or a link between two
end points of different cane segments (nodes in green). The
notation for a connection between end points p and q is (p, q)
and is symmetric in the sense that (p, q) = (q, p). Edges in
our Markov graph are built from connections that share one
end point in common.

On the other hand, Figure 3 illustrates how the vine structure
graph looks like after inference. The vine structure graph is
different from the Markov graph. It is a tree, showing how end
points of the cane segments are connected and flowing from
one cane segment to another.

The procedure to build our Markov graph, given the set of
skeleton cane segments is straight forward. The only thing that
still needs to be specified is how to extract the set of connec-
tions between different cane segments, i.e, the green nodes in
Figure 2. A brute force approach is to consider as connections
for a point, all points of other cane segments. However, I can
simplify the number of connections, by considering for each



end point, all end points of other cane segments that are at a
fixed distance of D pixels.

2) Connection States– Hidden Variable x: To define the
hidden variables xi associated to each node li in our Markov
graph, we used a binary random variable:

xi = x(li) =

{
1 if connection li exists
0 otherwise (1)

With this, instances of x = [x1, x2, ..., xm] describe ex-
actly which cane segments should be connected and which
should not. This means different vine structure graphs can be
achieved by shifting the values of xi from connected (one)
to unconnected (zero). We will call the hidden variable x a
configuration of connections of all cane segments. Note that
the number of possible configurations for m connections is
2m. Since in average we have that m > 100, you can see why
brute force search for the best configuration is not feasible.

3) Attributes for Connections – Evidence Variable z: To
define the evidence variables zi associated to each node li in
our Markov graph, we used a set of attributes zi = [θi, wi, di],
and then z = [z1, ..., zm]. The attributes are angle θi, thick-
ness difference wi, and separation di between the points of
connection li.

To define the angle θi of a connection candidate li, we
assigned to each end point of li a direction and used the
angle between these directions. The direction at an end point
of a polyline is computed as the average of directions between
consecutive points in the polyline. The average is taken from
an end point of the polyline until the end point in question.

Subsequently, the thickness of a polyline is computed as the
distance between the two edge contours that are assigned to
the polyline. In this way, the thickness difference wi between
the two polylines of the points of li, is simply the difference
between their thickness values. To compute the edge contours
assigned to the polyline, we iterate over all points of the
polyline, and for each point, we selected the two closest edge
points that are in different sides of the polyline curve.

Finally, to define separation di of the end points of con-
nection li, we computed the distance of one of the points to
the line in the direction of the other point, and viceversa. We
then defined di as the average of both distances. In this way,
separation can be thought as well as a measure of dislocation
between the center lines of the curves in question.

4) Probabilistic Model For x and z: Here we are inter-
ested in modeling the posterior P (x|z) with the purpose of
using MAP inference, and solve for the most likely state of
connections between cane segments x∗ given the observed set
of attributes z:

x∗ = argmax
x

P (x|z) (2)

To model the posterior P (x|z) we make use of our Markov
graph. First observe that cane segments connectivity decisions
are dependent on each other. Whether a cane segment is
connected to another should be dependent on the state of
other connections made for the cane. This motivated us into
using a HMRF for vine structure inference, since in this

model we can catch implicitly the long-distance relations
between xi from the explicit local adjacency relations in the
Markov graph [2]. Furthermore, assuming all xi satisfy the
local Markov property of being conditional independent of
all others given its neighbors in the graph, the Hammersley-
Clifford theorem [14] allows to write

P (x|z) =
1

Z(z)
e−E(x,z) (3)

where Z(z) =
∑

x e
−E(x,z) is the normalization constant

that makes P (x|z) a valid distribution1; and E is the energy
function of the state x under observations z. This represen-
tation of the posterior in Equation 3 is very convenient for
the inference problem in Equation 2, because it translates the
maximization of P (x|z) into the minimization of the energy
function E(x, z). Furthermore, since Z(z) does not depend
on x, it does not need to be included during optimization [2].

Therefore, instead of modeling the posterior P (x|z), our
aim is to model the energy function E(x, z). In many vision
problems, the energy function can be expressed as a sum of
likelihood and prior terms [2], [3], [15]:

E(x, z) =
∑
i

Φi(xi, zi) +
∑
c∈C

Ψc(xc) (4)

where C is the set of maximal cliques in the underlying
Markov network— defined as a set of subgraphs of the Markov
network that are fully connected, such that adding any other
node to a subgraph will spoil its fully connectedness [15].
This expression is useful when modeling a problem using a
HMRF, since it divides the energy into two terms that can
be understood intuitively [2]. First a term that tell us how
consistent/likely the current state variables xi are according
to the observations zi— the unary potentials Φi(xi, zi); and
second, a term that encapsulates the prior information one has
about plausible states— the clique potentials Ψc(xc). These
potentials are defined for our vine model in the following.

– Likelihood Potentials Φi: The likelihood potentials Φi

are defined from the probability of connections given the
observations P (xi|zi):

Φi(xi, zi) = xi(1− P (xi|zi)) + (1− xi)P (xi|zi) (5)

Observe that each potential Φi can be understood as a penalty
of a connection that was not made. The higher the probability
of connection the less energy it will add when the connection
xi = 1 is set in the configuration. If the connection is not
set, i.e xi = 0, then it will add high energy values, unless
the probability of connection is small. This will guide en-
ergy optimization techniques to look into configurations with
high probabilities of connections and keep unconnected those
with low probabilities. To model the conditional probabilities
P (xi|zi) we use Bayes rule and the likelihoods P (zi|xi),
similar to [16]:

P (xi|zi) =
P (xi)P (zi|xi)

P (xi)P (zi|xi) + (1− P (xi))P (zi|¬xi)
. (6)

1Z(z) is also known as the partition function [3].



Fig. 4. Pipeline of the vine structure extraction system. Different colors represent different cane segments. We start with an input 2D binary image and build
skeleton cane segments from the skeleton of the vine. Then we infer a tree structure using MAP inference over the connectivity of the cane segments.

In turn, to model the likelihoods P (zi|xi) we used two
normal distributions for the binary values of xi of connected
(xi = 1) and unconnected (xi = 0) connection states:

P (zi|xi) = [N0(zi;µ0,Σ0)]1−xi [N1(zi;µ1,Σ1)]xi (7)

These are commonly known as class conditional density
functions [17], since the density Nv(zi;µv,Σv) of each class
v is modeled separately by a respective distribution, which is a
normal in this case. The parameters of mean µv and covariance
matrices Σv for each class can be learned in a supervised way
from sets of connected (v = 1) and unconnected (v = 0)
candidate connection samples.

– Prior Potentials Ψc(xc): We defined the prior potentials
in terms of penalty values on the number of connections of
any single end point of a polyline. We penalized the maximum
number of connections at a single end point to be at maximum
three, with one of the connections being a cane segment itself.
This is done to simplify our model of connectivity, so a cane
segment can branch into maximum two other canes segments.
Mathematically, denoting by xp = [xp1 , xp2 , ..., xpn ] the
clique build from all candidate connections at end point p,
this penalization can be written as a function gM with penalty
constant λM > 0:

gM (xp) = λM · [max{3,
n∑

i=1

xpi} − 3]. (8)

Observe that the sum term counts the number of connections
candidates in the clique c that are set connected by setting
jci = 1, so if this number is less than our maximum number
of connections allowed of three, then gM is zero. On the other
hand, when this number exceeds the limit, the penalty of λM
is applied to the excess of number of connections. In this way,
we have Ψc(xc) = gM (xc).

IV. VINE STRUCTURE INFERENCE

The previous section proposed a model for vine structure in
binary images. In this section we apply this model to extract
vine structure from images. The pipeline of our system is
shown in Figure 4. Given an input 2D vine binary image, we

TABLE I
CANE STRUCTURE MATCHING TO GROUND TRUTH

Precision Recall

80% Canes Overlap

SA 0.155877 0.896615
Gibbs 0.09750 0.923147

Contour 0.55055 0.682525

50% Canes Overlap

SA 0.163194 0.938701
Gibbs 0.0997294 0.94419

Contour 0.633948 0.78591

50% Canes Length Coverage

SA 0.191369 0.188011
Gibbs 0.141376 0.303813

Contour 0.510073 0.390673

use extract the cane segments as explained in Section III-A.
After this is done, we build the Markov graph of Section III-B;
find the set of all candidates connections li; find all attributes
zi corresponding to each connection candidate; and initialize
the states of all connections xi. We then aim to minimize
the energy of Equation 4. In particular, we used simulated
annealing for solving for the most likely state of connections
x∗. Simulated annealing is a non-greedy heuristic approach
to energy minimization, that very often performs relatively
better that other optimization techniques [18]. It is also used
commonly for comparative studies [19], and so we believe it
is important for our research.

V. COMPARATIVE RESULTS

We compared our method to the methods of Marin et al. [4]
and Botterill et al. [1]. In Marin et al. [4], the author used a
set of ground truth canes annotated manually on a set of real
vine images, and compared its method to that of Botterill et
al. [1]. The comparison methods were precision and recall
of canes overlap and length coverage. Similarly, we used the
same set of images of 45 frames and ground truth data, and
assessed our method precision and recall to match ground



truth. Comparative results are shown in Table I. Similar to
Marin et al. [4], a cane is considered correct if it overlaps
with p% of a ground truth cane, or if it covers p% of the
length of the ground truth cane. We used the same values
of p = 80% and p = 50% for overlaps and p = 50% for
length coverage. The results table shows the average precision
and recall for all vine frames. Depending on the vine image,
our method showed a maximum precision of ≈ 0.52 , and
lowest precision of ≈ 0.05 with respect to the 50% for length
coverage property, which is considered the best measure for
evaluating vine canes extraction methods. In summary, our
results showed an improvement of precision upon the method
of Marin et al. [4] while maintaining recall similar. However,
in terms of precision, the method of Botterill et al. [1] is still
the best method to extract canes from images.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a novel HMRF vine model to extract
vine structure from images. The model used skeletonisation
to build cane segments, and vine structure extraction was for-
mulated as a MAP inference problem. Also, an energy model
was constructed by penalizing the number of connections at
end points and by learning two class conditional densities
for modeling the probability of connecting a given pair of
candidate points. Finally, we showed comparative results of
our method against state-of-the-art methods used for the same
tasks. Our method generalizes and improves precision while
maintaining consistently recall in comparison to the method
of Marin et al. [4].

Our method worked better on images where less noise from
leafs regions or artifacts are present in the binary image. In
general the connections at crossings of canes where solved
by our method when only two canes where involved and
when they had recognizable different directions. Other regions
generated problems since crossing canes with similar direction
are represented in a binary image with a single skeleton cane
segment, and this unique cane segment is used for representing
two different real cane segments. Therefore, we need to
address in our model this case scenario. For this, first we need
to be able to recognize these regions, then one solution could
be to just duplicate the cane segment, or model the Markov
graph differently at those regions.

We believe that our method can be improved to match
the accuracy of the heuristic approach of Botterill et al. [1].
For this we can improve our energy model to include global
information of currently connected segments at any given time
during optimization. Our energy model is still making mainly
local decisions, and that is a limitation of the current model.
Another limitation of our method is that some cane segments
are not considered even as candidates, because of our method
of selecting the candidates is filtering points within a threshold
distance. Since we don’t want to consider every other possible
point as candidate, we are researching other ways of selecting
connection candidates.

As a future work, we are currently researching how to
incorporate a direction attribute at every candidate connection.

This will allow us to solve for cycles in the vine structure
graph, which happens currently. Also, we are researching
new energy potentials and we plan to evaluate several energy
minimization techniques as well as Monte Carlo sampling
methods to perform vine inference in the proposed model.
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